1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import logging
import os
import numpy as np
import pytest
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
# zarr (because of numcodecs) is only supported on x86_64 machines
zarr = pytest.importorskip("zarr", reason="zarr not installed")
class TestZspy:
@pytest.fixture
def signal(self):
data = np.ones((10, 10, 10, 10))
s = hs.signals.Signal1D(data)
return s
@pytest.mark.parametrize("store_class", [zarr.N5Store, zarr.ZipStore])
def test_save_store(self, signal, tmp_path, store_class):
filename = tmp_path / "testmodels.zspy"
store = store_class(path=filename)
signal.save(store)
if store_class is zarr.ZipStore:
assert os.path.isfile(filename)
else:
assert os.path.isdir(filename)
store2 = store_class(path=filename)
signal2 = hs.load(store2)
np.testing.assert_array_equal(signal2.data, signal.data)
def test_save_ZipStore_close_file(self, signal, tmp_path):
filename = tmp_path / "testmodels.zspy"
store = zarr.ZipStore(path=filename)
signal.save(store, close_file=False)
assert os.path.isfile(filename)
store2 = zarr.ZipStore(path=filename)
s2 = hs.load(store2)
np.testing.assert_array_equal(s2.data, signal.data)
def test_save_wrong_store(self, signal, tmp_path, caplog):
filename = tmp_path / "testmodels.zspy"
store = zarr.N5Store(path=filename)
signal.save(store)
store2 = zarr.N5Store(path=filename)
s2 = hs.load(store2)
np.testing.assert_array_equal(s2.data, signal.data)
store2 = zarr.NestedDirectoryStore(path=filename)
with pytest.raises(Exception):
with caplog.at_level(logging.ERROR):
_ = hs.load(store2)
@pytest.mark.parametrize("overwrite", [None, True, False])
def test_overwrite(self, signal, overwrite, tmp_path):
filename = tmp_path / "testmodels.zspy"
signal.save(filename=filename)
signal2 = signal * 2
signal2.save(filename=filename, overwrite=overwrite)
if overwrite is None:
np.testing.assert_array_equal(signal.data, hs.load(filename).data)
elif overwrite:
np.testing.assert_array_equal(signal2.data, hs.load(filename).data)
else:
np.testing.assert_array_equal(signal.data, hs.load(filename).data)
def test_compression_opts(self, tmp_path):
self.filename = tmp_path / "testfile.zspy"
from numcodecs import Blosc
comp = Blosc(cname="zstd", clevel=1, shuffle=Blosc.SHUFFLE)
hs.signals.BaseSignal([1, 2, 3]).save(self.filename, compressor=comp)
f = zarr.open(self.filename.__str__(), mode="r+")
d = f["Experiments/__unnamed__/data"]
assert d.compressor == comp
@pytest.mark.parametrize("compressor", (None, "default", "blosc"))
def test_compression(self, compressor, tmp_path):
if compressor == "blosc":
from numcodecs import Blosc
compressor = Blosc(cname="zstd", clevel=3, shuffle=Blosc.BITSHUFFLE)
s = hs.signals.Signal1D(np.ones((3, 3)))
s.save(
tmp_path / "test_compression.zspy", overwrite=True, compressor=compressor
)
_ = hs.load(tmp_path / "test_compression.zspy")
def test_non_valid_zspy(tmp_path, caplog):
filename = tmp_path / "testfile.zspy"
data = np.arange(10)
f = zarr.group(filename)
f.create_dataset("dataset", data=data)
with pytest.raises(IOError):
with caplog.at_level(logging.ERROR):
_ = hs.load(filename)
|