1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import logging
import os
import struct
import warnings
import xml.etree.ElementTree as ET
from collections import OrderedDict
from glob import glob
import numpy as np
from dateutil import parser
from rsciio._docstrings import FILENAME_DOC, LAZY_DOC, RETURNS_DOC
from rsciio.utils.tools import DTBox, sarray2dict
_logger = logging.getLogger(__name__)
data_types = {
"1": "<u1",
"2": "<u2",
"3": "<u4",
"4": "<i1",
"5": "<i2",
"6": "<i4",
"7": "<f4",
"8": "<f8",
"9": "<c8",
"10": "<c16",
}
XY_TAG_ID = 16706 # header contains XY calibration
def readLELongLong(file):
"""Read 8 bytes as *little endian* integer in file"""
read_bytes = file.read(8)
return struct.unpack("<Q", read_bytes)[0]
def readLELong(file):
"""Read 4 bytes as *little endian* integer in file"""
read_bytes = file.read(4)
return struct.unpack("<L", read_bytes)[0]
def readLEShort(file):
"""Read 2 bytes as *little endian* integer in file"""
read_bytes = file.read(2)
return struct.unpack("<H", read_bytes)[0]
def dimension_array_dtype(n, DescriptionLength, UnitsLength):
dt_list = [
("Dim-%s_DimensionSize" % n, ("<u4")),
("Dim-%s_CalibrationOffset" % n, "<f8"),
("Dim-%s_CalibrationDelta" % n, "<f8"),
("Dim-%s_CalibrationElement" % n, "<u4"),
("Dim-%s_DescriptionLength" % n, "<u4"),
("Dim-%s_Description" % n, (bytes, DescriptionLength)),
("Dim-%s_UnitsLength" % n, "<u4"),
("Dim-%s_Units" % n, (bytes, UnitsLength)),
]
return dt_list
def get_lengths(file):
file.seek(24, 1)
description_length = readLELong(file)
file.seek(description_length, 1)
unit_length = readLELong(file)
file.seek(unit_length, 1)
return description_length, unit_length
def get_header_dtype_list(file):
# Read the first part of the header
header_list1 = [
("ByteOrder", "<u2"),
("SeriesID", "<u2"),
("SeriesVersion", "<u2"),
("DataTypeID", "<u4"),
("TagTypeID", "<u4"),
("TotalNumberElements", "<u4"),
("ValidNumberElements", "<u4"),
]
header1 = np.fromfile(file, dtype=np.dtype(header_list1), count=1)
# Depending on the SeriesVersion, the OffsetArrayOffset is 4 or 8 bytes
if header1["SeriesVersion"] <= 528:
OffsetArrayOffset_dtype = "<u4"
beginning_dimension_array_section = 30
else:
OffsetArrayOffset_dtype = "<u8"
beginning_dimension_array_section = 34
# Once we know the type of the OffsetArrayOffset, we can continue reading
# the 2nd part of the header
file.seek(22)
header_list2 = [
("OffsetArrayOffset", OffsetArrayOffset_dtype),
("NumberDimensions", "<u4"),
]
header2 = np.fromfile(file, dtype=np.dtype(header_list2), count=1)
header_list = header_list1 + header_list2
# Go to the beginning of the dimension array section
file.seek(beginning_dimension_array_section)
for n in range(1, header2["NumberDimensions"][0] + 1):
description_length, unit_length = get_lengths(file)
header_list += dimension_array_dtype(n, description_length, unit_length)
file.seek(0)
return header_list
def get_data_dtype_list(file, offset, record_by):
if record_by == "spectrum":
file.seek(offset + 20)
data_type = readLEShort(file)
array_size = readLELong(file)
header = [
("CalibrationOffset", ("<f8")),
("CalibrationDelta", "<f8"),
("CalibrationElement", "<u4"),
("DataType", "<u2"),
("ArrayLength", "<u4"),
("Array", (data_types[str(data_type)], array_size)),
]
shape = array_size
elif record_by == "image": # Untested
file.seek(offset + 40)
data_type = readLEShort(file)
array_size_x = readLELong(file)
array_size_y = readLELong(file)
header = [
("CalibrationOffsetX", ("<f8")),
("CalibrationDeltaX", "<f8"),
("CalibrationElementX", "<u4"),
("CalibrationOffsetY", ("<f8")),
("CalibrationDeltaY", "<f8"),
("CalibrationElementY", "<u4"),
("DataType", "<u2"),
("ArraySizeX", "<u4"),
("ArraySizeY", "<u4"),
("Array", (data_types[str(data_type)], (array_size_x, array_size_y))),
]
shape = (array_size_x, array_size_y)
return header, shape
def get_data_tag_dtype_list(data_type_id):
if data_type_id == XY_TAG_ID:
header = [
("TagTypeID", ("<u2")),
("Unknown", ("<u2")), # Not in Boothroyd description. = 0
("Time", "<u4"), # The precision is one second...
("PositionX", "<f8"),
("PositionY", "<f8"),
]
else: # elif data_type_id == ?????, 16722?
header = [
("TagTypeID", ("<u2")),
# Not in Boothroyd description. = 0. Not tested.
("Unknown", ("<u2")),
("Time", "<u4"), # The precision is one second...
]
return header
def log_struct_array_values(struct_array):
for key in struct_array.dtype.names:
if (
not isinstance(struct_array[key], np.ndarray)
or np.array(struct_array[key].shape).sum() == 1
):
_logger.info("%s : %s", key, struct_array[key])
else:
_logger.info("%s : Array", key)
def guess_record_by(record_by_id):
if record_by_id == 16672:
return "spectrum"
else:
return "image"
def parse_ExperimentalDescription(et, dictree):
dictree.add_node(et.tag)
dictree = dictree[et.tag]
for data in et.find("Root").findall("Data"):
label = data.find("Label").text
value = data.find("Value").text
units = data.find("Unit").text
item = label if not units else label + "_%s" % units
try:
# try to coerce value to decimal representation
value = float(value) if units else value
except ValueError:
_logger.warning(
f"Expected decimal value for {label}, " f"but received {value} instead"
)
dictree[item] = value
def parse_TrueImageHeaderInfo(et, dictree):
dictree.add_node(et.tag)
dictree = dictree[et.tag]
et = ET.fromstring(et.text)
for data in et.findall(b"Data"):
dictree[data.find(b"Index").text] = float(data.find(b"Value").text)
def emixml2dtb(et, dictree):
if et.tag == "ExperimentalDescription":
parse_ExperimentalDescription(et, dictree)
return
elif et.tag == "TrueImageHeaderInfo":
parse_TrueImageHeaderInfo(et, dictree)
return
if et.text:
dictree[et.tag] = et.text
return
else:
dictree.add_node(et.tag)
for child in et:
emixml2dtb(child, dictree[et.tag])
def emi_reader(filename, lazy=False, only_valid_data=True, dump_xml=False):
# TODO: recover the tags from the emi file. It is easy: just look for
# <ObjectInfo> and </ObjectInfo>. It is standard xml :)
# xml chunks are identified using UUID, if we can find how these UUID are
# generated then, it will possible to match to the corresponding ser file
# and add the detector information in the metadata
objects = get_xml_info_from_emi(filename)
orig_fname = filename
filename = os.path.splitext(filename)[0]
if dump_xml:
for i, obj in enumerate(objects):
with open(filename + "-object-%s.xml" % i, "w") as f:
f.write(obj)
ser_files = sorted(glob(filename + "_[0-9].ser"))
sers = []
for f in ser_files:
_logger.info("Opening %s", f)
try:
sers.extend(ser_reader(f, objects, lazy, only_valid_data))
except IOError: # Probably a single spectrum that we don't support
continue
index = int(os.path.splitext(f)[0].split("_")[-1]) - 1
op = DTBox(sers[-1]["original_metadata"], box_dots=True)
# defend against condition where more ser files are present than object
# metadata defined in emi
if index < len(objects):
emixml2dtb(ET.fromstring(objects[index]), op)
else:
_logger.warning(
f"{orig_fname} did not contain any metadata for "
f"{f}, so only .ser header information was read"
)
sers[-1]["original_metadata"] = op.to_dict()
return sers
def file_reader(filename, lazy=False, only_valid_data=True):
"""
Read sets of ``.ser`` and ``.emi`` files from the FEI/ThermoFisher software TIA
(TEM Imaging & Analysis).
Parameters
----------
%s
%s
only_valid_data : bool, Default=True
For cases, where acquisition of series or linescan data stopped before
the end. If `True`, load only the acquired data. If `False`, the empty
data are filled with zeros.
%s
"""
ext = os.path.splitext(filename)[1][1:]
if ext.lower() == "ser":
to_return = ser_reader(
filename, objects=None, lazy=lazy, only_valid_data=only_valid_data
)
elif ext.lower() == "emi":
to_return = emi_reader(filename, lazy, only_valid_data)
else:
raise ValueError(f"'{ext}' is not a supported extension for the TIA reader.")
return to_return
file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)
def load_ser_file(filename):
_logger.info("Opening the file: %s", filename)
with open(filename, "rb") as f:
header = np.fromfile(f, dtype=np.dtype(get_header_dtype_list(f)), count=1)
_logger.info("Header info:")
log_struct_array_values(header[0])
if header["ValidNumberElements"] == 0:
raise IOError(
"The file does not contains valid data. "
"If it is a single spectrum, the data is contained in the "
".emi file but HyperSpy cannot currently extract this "
"information."
)
# Read the first element of data offsets
f.seek(header["OffsetArrayOffset"][0])
# OffsetArrayOffset can contain 4 or 8 bytes integer depending if the
# data have been acquired using a 32 or 64 bits platform.
if header["SeriesVersion"] <= 528:
data_offset = readLELong(f)
data_offset_array = np.fromfile(
f, dtype="<u4", count=header["ValidNumberElements"][0]
)
else:
data_offset = readLELongLong(f)
data_offset_array = np.fromfile(
f, dtype="<u8", count=header["ValidNumberElements"][0]
)
data_dtype_list, shape = get_data_dtype_list(
f, data_offset, guess_record_by(header["DataTypeID"])
)
tag_dtype_list = get_data_tag_dtype_list(header["TagTypeID"])
f.seek(data_offset)
data = np.empty(
header["ValidNumberElements"][0],
dtype=np.dtype(data_dtype_list + tag_dtype_list),
)
for i, offset in enumerate(data_offset_array):
data[i] = np.fromfile(
f, dtype=np.dtype(data_dtype_list + tag_dtype_list), count=1
)
f.seek(offset)
_logger.info("Data info:")
log_struct_array_values(data[0])
return header, data
def get_xml_info_from_emi(emi_file):
with open(emi_file, "rb") as f:
tx = f.read()
objects = []
i_start = 0
while i_start != -1:
i_start += 1
i_start = tx.find(b"<ObjectInfo>", i_start)
i_end = tx.find(b"</ObjectInfo>", i_start)
objects.append(tx[i_start : i_end + 13].decode("utf-8"))
return objects[:-1]
def get_calibration_from_position(position):
"""Compute the size, scale and offset of a linear axis from coordinates.
This function assumes rastering on a regular grid for the full size of
each dimension before rastering over another one. Fox example: a11, a12,
a13, a21, a22, a23 for a 2x3 grid.
Parameters
----------
position: numpy array.
Position coordinates of the axis. Normally as in PositionX/Y of the
ser file.
Returns
-------
axis_attr: dictionary with `size`, `scale`, `offeset` keys.
"""
offset = position[0]
for i, x in enumerate(position):
if x != position[0]:
break
if i == len(position) - 1:
# No scanning over this axis
scale = 0
size = 0
else:
scale = x - position[0]
if i == 1: # Rastering over this dimension first
for j, x in enumerate(position[1:]):
if x == position[0]:
break
size = j + 1
else: # Second rastering dimension
size = len(position) / i
axis_attr = {"size": size, "scale": scale, "offset": offset}
return axis_attr
def get_axes_from_position(header, data):
array_shape = []
axes = []
array_size = int(header["ValidNumberElements"])
if data[b"TagTypeID"][0] == XY_TAG_ID:
xcal = get_calibration_from_position(data[b"PositionX"])
ycal = get_calibration_from_position(data[b"PositionY"])
if xcal[b"size"] == 0 and ycal[b"size"] != 0:
# Vertical line scan
axes.append(
{
"name": "x",
"units": "meters",
"index_in_array": 0,
}
)
axes[-1].update(xcal)
array_shape.append(axes[-1]["size"])
elif xcal[b"size"] != 0 and ycal[b"size"] == 0:
# Horizontal line scan
axes.append(
{
"name": "y",
"units": "meters",
"index_in_array": 0,
}
)
axes[-1].update(ycal)
array_shape.append(axes[-1]["size"])
elif xcal[b"size"] * ycal[b"size"] == array_size:
# Signal2D
axes.append(
{
"name": "y",
"units": "meters",
"index_in_array": 0,
}
)
axes[-1].update(ycal)
array_shape.append(axes[-1]["size"])
axes.append(
{
"name": "x",
"units": "meters",
"index_in_array": 1,
}
)
axes[-1].update(xcal)
array_shape.append(axes[-1]["size"])
elif xcal[b"size"] == ycal[b"size"] == array_size:
# Oblique line scan
scale = np.sqrt(xcal["scale"] ** 2 + ycal["scale"] ** 2)
axes.append(
{
"name": "x",
"units": "meters",
"index_in_array": 0,
"offset": 0,
"scale": scale,
"size": xcal["size"],
}
)
array_shape.append(axes[-1]["size"])
else:
raise IOError
else:
array_shape = [header["ValidNumberElements"]]
axes.append(
{
"name": "Unknown dimension",
"offset": 0,
"scale": 1,
"units": "",
"size": header["ValidNumberElements"],
"index_in_array": 0,
}
)
return array_shape, axes
def convert_xml_to_dict(xml_object):
op = DTBox(box_dots=True)
emixml2dtb(ET.fromstring(xml_object), op)
return op
def ser_reader(filename, objects=None, lazy=False, only_valid_data=True):
"""
Reads the information from the file and returns it in the HyperSpy
required format.
"""
header, data = load_ser_file(filename)
record_by = guess_record_by(header["DataTypeID"])
ndim = int(header["NumberDimensions"][0])
date, time = None, None
if objects is not None:
objects_dict = convert_xml_to_dict(objects[0])
try:
acq_date = objects_dict.ObjectInfo.AcquireDate
date, time = _get_date_time(acq_date)
except AttributeError:
_logger.warning(
f"AcquireDate not found in metadata of {filename};"
" Not setting metadata date or time"
)
if (
"PositionY" in data.dtype.names
and len(data["PositionY"]) > 1
and (data["PositionY"][0] == data["PositionY"][1])
):
# The spatial dimensions are stored in F order i.e. X, Y, ...
order = "F"
else:
# The spatial dimensions are stored in C order i.e. ..., Y, X
order = "C"
if ndim == 0 and header["ValidNumberElements"] != 0:
# The calibration of the axes are not stored in the header.
# We try to guess from the position coordinates.
array_shape, axes = get_axes_from_position(header=header, data=data)
else:
axes = []
array_shape = [
None,
] * int(ndim)
spatial_axes = ["x", "y"][:ndim]
for i in range(ndim):
idim = 1 + i if order == "C" else ndim - i
if (
record_by == "spectrum"
or header["Dim-%i_DimensionSize" % (i + 1)][0] != 1
):
units = (
header["Dim-%i_Units" % (idim)][0].decode("utf-8")
if header["Dim-%i_UnitsLength" % (idim)] > 0
else None
)
if units == "meters":
name = spatial_axes.pop() if order == "F" else spatial_axes.pop(-1)
else:
name = None
axes.append(
{
"offset": header["Dim-%i_CalibrationOffset" % idim][0],
"scale": header["Dim-%i_CalibrationDelta" % idim][0],
"units": units,
"size": header["Dim-%i_DimensionSize" % idim][0],
"name": name,
"navigate": True,
}
)
array_shape[i] = header["Dim-%i_DimensionSize" % idim][0]
# Deal with issue when TotalNumberElements does not equal
# ValidNumberElements for ndim==1.
if (
ndim == 1
and (header["TotalNumberElements"] != header["ValidNumberElements"][0])
and only_valid_data
):
if header["ValidNumberElements"][0] == 1:
# no need for navigation dimension
array_shape = []
axes = []
else:
array_shape[0] = header["ValidNumberElements"][0]
axes[0]["size"] = header["ValidNumberElements"][0]
# Spectral dimension
if record_by == "spectrum":
axes.append(
{
"offset": data["CalibrationOffset"][0],
"scale": data["CalibrationDelta"][0],
"size": data["ArrayLength"][0],
"index_in_array": header["NumberDimensions"][0],
"navigate": False,
}
)
# FEI seems to use the international system of units (SI) for the
# energy scale (eV).
axes[-1]["units"] = "eV"
axes[-1]["name"] = "Energy"
array_shape.append(data["ArrayLength"][0])
elif record_by == "image":
if objects is not None:
units = _guess_units_from_mode(objects_dict, header)
else:
units = "meters"
# Y axis
axes.append(
{
"name": "y",
"offset": data["CalibrationOffsetY"][0]
- data["CalibrationElementY"][0] * data["CalibrationDeltaY"][0],
"scale": data["CalibrationDeltaY"][0],
"units": units,
"size": data["ArraySizeY"][0],
"navigate": False,
}
)
array_shape.append(data["ArraySizeY"][0])
# X axis
axes.append(
{
"name": "x",
"offset": data["CalibrationOffsetX"][0]
- data["CalibrationElementX"][0] * data["CalibrationDeltaX"][0],
"scale": data["CalibrationDeltaX"][0],
"size": data["ArraySizeX"][0],
"units": units,
"navigate": False,
}
)
array_shape.append(data["ArraySizeX"][0])
# FEI seems to use the international system of units (SI) for the
# spatial scale. However, we prefer to work in nm
for axis in axes:
if axis["units"] == "meters":
axis["units"] = "nm"
axis["scale"] *= 10**9
elif axis["units"] == "1/meters":
axis["units"] = "1 / nm"
axis["scale"] /= 10**9
# Remove Nones from array_shape caused by squeezing size 1 dimensions
array_shape = [dim for dim in array_shape if dim is not None]
if lazy:
from dask import delayed
from dask.array import from_delayed
val = delayed(load_only_data, pure=True)(
filename, array_shape, record_by, len(axes), only_valid_data=only_valid_data
)
dc = from_delayed(val, shape=array_shape, dtype=data["Array"].dtype)
else:
dc = load_only_data(
filename,
array_shape,
record_by,
len(axes),
data=data,
header=header,
only_valid_data=only_valid_data,
)
original_metadata = OrderedDict()
header_parameters = sarray2dict(header)
sarray2dict(data, header_parameters)
# We remove the Array key to save memory avoiding duplication
del header_parameters["Array"]
original_metadata["ser_header_parameters"] = header_parameters
metadata = {
"General": {
"original_filename": os.path.split(filename)[1],
},
"Signal": {
"signal_type": "",
},
}
if date is not None and time is not None:
metadata["General"]["date"] = date
metadata["General"]["time"] = time
dictionary = {
"data": dc,
"metadata": metadata,
"axes": axes,
"original_metadata": original_metadata,
"mapping": mapping,
}
return [
dictionary,
]
def load_only_data(
filename,
array_shape,
record_by,
num_axes,
data=None,
header=None,
only_valid_data=True,
):
if data is None:
header, data = load_ser_file(filename)
# If the acquisition stops before finishing the job, the stored file will
# report the requested size even though no values are recorded. Therefore
# if the shapes of the retrieved array does not match that of the data
# dimensions we must fill the rest with zeros or (better) nans if the
# dtype is float
if np.prod(array_shape) != np.prod(data["Array"].shape):
if int(header["NumberDimensions"][0]) == 1 and only_valid_data:
# No need to fill with zeros if `TotalNumberElements !=
# ValidNumberElements` for series data.
# The valid data is always `0:ValidNumberElements`
dc = data["Array"][0 : header["ValidNumberElements"][0], ...]
array_shape[0] = header["ValidNumberElements"][0]
else:
# Maps will need to be filled with zeros or nans
dc = np.zeros(np.prod(array_shape), dtype=data["Array"].dtype)
if dc.dtype is np.dtype("f") or dc.dtype is np.dtype("f8"):
dc[:] = np.nan
dc[: data["Array"].ravel().shape[0]] = data["Array"].ravel()
else:
dc = data["Array"]
dc = dc.reshape(array_shape)
if record_by == "image":
dc = dc[..., ::-1, :]
if num_axes != len(dc.shape):
dc = dc.squeeze()
if num_axes != len(dc.shape):
raise IOError("Please report this issue to the HyperSpy developers.")
return dc
def _guess_units_from_mode(objects_dict, header):
# in case the xml file doesn't contain the "Mode" or the header doesn't
# contain 'Dim-1_UnitsLength', return "meters" as default, which will be
# OK most of the time
warn_str = (
"The navigation axes units could not be determined. "
"Setting them to `nm`, but this may be wrong."
)
try:
mode = objects_dict.ObjectInfo.ExperimentalDescription.Mode
isCamera = "CameraNamePath" in objects_dict.ObjectInfo.AcquireInfo.keys()
except AttributeError: # in case the xml chunk doesn't contain the Mode
warnings.warn(warn_str)
return "meters" # Most of the time, the unit will be meters!
if "Dim-1_UnitsLength" in header.dtype.fields:
# assuming that for an image stack, the UnitsLength of the "3rd"
# dimension is 0
isImageStack = header["Dim-1_UnitsLength"][0] == 0
# Workaround: if this is not an image stack and not a STEM image, then
# we assume that it should be a diffraction
isDiffractionScan = header["Dim-1_DimensionSize"][0] > 1 and not isImageStack
else:
warnings.warn(warn_str)
return "meters" # Most of the time, the unit will be meters!
_logger.info(objects_dict.ObjectInfo.AcquireInfo)
_logger.info("mode: %s", mode)
_logger.info("isCamera: %s", isCamera)
_logger.info("isImageStack: %s", isImageStack)
_logger.info("isImageStack: %s", isDiffractionScan)
if "STEM" in mode:
# data recorded in STEM with a camera, so we assume, it's a diffraction
# in case we can't make use the detector is a camera, use a workaround
if isCamera or isDiffractionScan:
return "1/meters"
else:
return "meters"
elif "Diffraction" in mode:
return "1/meters"
else:
return "meters"
def _get_simplified_mode(mode):
if "STEM" in mode:
return "STEM"
else:
return "TEM"
def _get_date_time(value):
dt = parser.parse(value)
return dt.date().isoformat(), dt.time().isoformat()
def _get_microscope_name(value):
return value.replace("Microscope ", "")
mapping = {
"ObjectInfo.ExperimentalDescription.High_tension_kV": (
"Acquisition_instrument.TEM.beam_energy",
None,
),
"ObjectInfo.ExperimentalDescription.Microscope": (
"Acquisition_instrument.TEM.microscope",
_get_microscope_name,
),
"ObjectInfo.ExperimentalDescription.Mode": (
"Acquisition_instrument.TEM.acquisition_mode",
_get_simplified_mode,
),
"ObjectInfo.ExperimentalDescription.Camera length_m": (
"Acquisition_instrument.TEM.camera_length",
lambda x: x * 1e3,
),
"ObjectInfo.ExperimentalDescription.Magnification_x": (
"Acquisition_instrument.TEM.magnification",
None,
),
"ObjectInfo.AcquireInfo.CameraNamePath": (
"Acquisition_instrument.TEM.Detector.Camera.Name",
None,
),
"ObjectInfo.AcquireInfo.DwellTimePath": (
"Acquisition_instrument.TEM.Detector.Camera.exposure",
None,
),
"ObjectInfo.ExperimentalDescription.Stage_A_deg": (
"Acquisition_instrument.TEM.Stage.tilt_alpha",
None,
),
"ObjectInfo.ExperimentalDescription.Stage_B_deg": (
"Acquisition_instrument.TEM.Stage.tilt_beta",
None,
),
"ObjectInfo.ExperimentalDescription.Stage_X_um": (
"Acquisition_instrument.TEM.Stage.x",
lambda x: x * 1e-3,
),
"ObjectInfo.ExperimentalDescription.Stage_Y_um": (
"Acquisition_instrument.TEM.Stage.y",
lambda x: x * 1e-3,
),
"ObjectInfo.ExperimentalDescription.Stage_Z_um": (
"Acquisition_instrument.TEM.Stage.z",
lambda x: x * 1e-3,
),
"ObjectInfo.ExperimentalDescription.User": ("General.authors", None),
}
|