1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import csv
import logging
import os
import re
import warnings
from datetime import datetime, timedelta
import numpy as np
import tifffile
from dateutil import parser
from tifffile import TiffFile, TiffPage, imwrite
from rsciio._docstrings import (
FILENAME_DOC,
LAZY_DOC,
RETURNS_DOC,
SIGNAL_DOC,
)
from rsciio.utils.date_time_tools import get_date_time_from_metadata
from rsciio.utils.tools import _UREG, DTBox
_logger = logging.getLogger(__name__)
axes_label_codes = {
"X": "width",
"Y": "height",
"S": "sample",
"P": "plane",
"I": "image series",
"Z": "depth",
"C": "color|em-wavelength|channel",
"E": "ex-wavelength|lambda",
"T": "time",
"R": "region|tile",
"A": "angle",
"F": "phase",
"H": "lifetime",
"L": "exposure",
"V": "event",
"Q": None,
"_": None,
}
def file_writer(filename, signal, export_scale=True, extratags=None, **kwds):
"""
Write data to tif using Christoph Gohlke's tifffile library.
Parameters
----------
%s
%s
export_scale : bool, default=True
Export the scale and the units (compatible with DM and ImageJ) to
appropriate tags.
extratags : tuple, list of tuple, None, default=None
Save custom tags through the ``tifffile`` library. Must conform to a
specific convention (see `tifffile documentation
<https://github.com/cgohlke/tifffile>`_ and example below).
**kwds : dict, optional
Additional arguments to be passed to the ``imwrite`` function of the `tifffile library
<https://github.com/cgohlke/tifffile>`_.
Examples
--------
>>> # Saving the string 'Random metadata' in a custom tag (ID 65000)
>>> extratag = [(65000, 's', 1, "Random metadata", False)]
>>> file_writer('file.tif', signal, extratags=extratag)
>>> # Reading the string 'Random metadata' from a custom tag (ID 65000)
>>> s2 = file_reader('file.tif')
>>> s2.original_metadata['Number_65000']
b'Random metadata'
"""
data = signal["data"]
metadata = signal.get("metadata", {})
photometric = "MINISBLACK"
# HyperSpy uses struct arrays to store RGBA data
from rsciio.utils import rgb_tools
if extratags is None:
extratags = []
if rgb_tools.is_rgbx(data):
data = rgb_tools.rgbx2regular_array(data)
photometric = "RGB"
if "description" in kwds.keys() and export_scale:
kwds.pop("description")
_logger.warning(
"Description and export scale cannot be used at the same time, "
"because it is incompability with the 'ImageJ' tiff format"
)
if export_scale and "axes" in signal.keys():
kwds.update(_get_tags_dict(signal, extratags=extratags))
_logger.debug(f"kwargs passed to tifffile.py imsave: {kwds}")
if "metadata" not in kwds.keys():
# Because we write the calibration to the ImageDescription tag
# for imageJ, we need to disable tiffile from also writing JSON
# metadata if not explicitely requested
# (https://github.com/cgohlke/tifffile/issues/21)
kwds["metadata"] = None
if "General" in metadata.keys() and metadata["General"].get("date"):
dt = get_date_time_from_metadata(signal["metadata"], formatting="datetime")
kwds["datetime"] = dt
imwrite(filename, data, software="hyperspy", photometric=photometric, **kwds)
file_writer.__doc__ %= (FILENAME_DOC.replace("read", "write to"), SIGNAL_DOC)
def file_reader(
filename,
lazy=False,
force_read_resolution=False,
multipage_as_list=False,
hamamatsu_streak_axis_type=None,
**kwds,
):
"""
Read data from tif files using Christoph Gohlke's tifffile library.
The units and the scale of images saved with ImageJ or Digital
Micrograph is read. There is limited support for reading the scale of
files created with Zeiss and FEI SEMs.
Parameters
----------
%s
%s
force_read_resolution : bool, default=False
Force read image resolution using the ``x_resolution``, ``y_resolution``
and ``resolution_unit`` tiff tags. Beware: most software don't (properly)
use these tags when saving ``.tiff`` files.
See `<https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml>`_.
multipage_as_list : bool, default=False
Read multipage tiff and return list with full content of every page. This
utilises ``tifffile``s ``pages`` instead of ``series`` way of data access,
which differently to ``series`` is able to return metadata per page,
where ``series`` (default) is able to access only metadata from first page.
This is recommended to be used when data is from dynamic experiments (where
some of parameters of the instrument are changing during acquisition).
hamamatsu_streak_axis_type : str, default=None
Decide the type of the time axis for hamamatsu streak files:
- ``"uniform"``: the best-fit linear axis is used, inducing a (small)
linearisation error. Initialise a UniformDataAxis.
- ``"data"``: the raw time axis parsed from the metadata is used.
Initialise a DataAxis.
- ``"functional"``: the best-fit 3rd-order polynomial axis is used,
avoiding linearisation error. Initialise a FunctionalDataAxis.
By default (``None``), ``uniform`` is used but a warning of the linearisation error
is issued. Explicitly passing ``hamamatsu_streak_axis_type='uniform'``
suppresses the warning. In all cases, the original axis values are stored
in the ``original_metadata`` of the signal object.
**kwds : dict, optional
Additional arguments to be passed to the ``TiffFile`` class of the `tifffile library
<https://github.com/cgohlke/tifffile>`_.
%s
Examples
--------
>>> # Force read image resolution using the x_resolution, y_resolution and
>>> # the resolution_unit of the TIFF tags.
>>> s = file_reader('file.tif', force_read_resolution=True)
>>> # Load a non-uniform axis from a hamamatsu streak file:
>>> s = file_reader('file.tif', hamamatsu_streak_axis_type='data')
"""
# We can't use context manager, because it closes the file on exit
# and the file needs to stay open when loading lazily
# close the file manually
tiff = TiffFile(filename, **kwds)
if multipage_as_list:
handles = tiff.pages # use full access with pages interface
else:
handles = tiff.series # use fast access with series interface
dict_list = [
_read_tiff(
tiff,
handle,
filename,
force_read_resolution,
lazy=lazy,
hamamatsu_streak_axis_type=hamamatsu_streak_axis_type,
**kwds,
)
for handle in handles
]
if not lazy:
tiff.close()
return dict_list
file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)
def _order_axes_by_name(names: list, scales: dict, offsets: dict, units: dict):
"""order axes by names in lists"""
scales_new = [1.0] * len(names)
offsets_new = [0.0] * len(names)
units_new = [None] * len(names)
for i, name in enumerate(names):
if name == "height":
scales_new[i] = scales["x"]
offsets_new[i] = offsets["x"]
units_new[i] = units["x"]
elif name == "width":
scales_new[i] = scales["y"]
offsets_new[i] = offsets["y"]
units_new[i] = units["y"]
elif name in ["depth", "image series", "time"]:
scales_new[i] = scales["z"]
offsets_new[i] = offsets["z"]
units_new[i] = units["z"]
return scales_new, offsets_new, units_new
def _build_axes_dictionaries(shape, names=None, scales=None, offsets=None, units=None):
"""Build axes dictionaries from a set of lists"""
if names is None:
names = [""] * len(shape)
if scales is None:
scales = [1.0] * len(shape)
if offsets is None:
offsets = [0.0] * len(shape)
if units is None:
units = [None] * len(shape)
navigate = [True] * len(shape)
navigate[-2:] = (False, False)
axes = [
{
"size": size,
"name": str(name),
"scale": scale,
"offset": offset,
"units": unit,
"navigate": nav,
}
for size, name, scale, offset, unit, nav in zip(
shape, names, scales, offsets, units, navigate
)
]
return axes
def _read_tiff(
tiff,
handle,
filename,
force_read_resolution=False,
lazy=False,
memmap=None,
RGB_as_structured_array=True,
hamamatsu_streak_axis_type=None,
**kwds,
):
"""handle - one of either of TiffPage type or TiffPageSeries type"""
axes = handle.axes
if isinstance(handle, TiffPage):
page = handle
else:
page = handle.pages[0]
shape = handle.shape
dtype = handle.dtype
is_rgb = page.photometric == tifffile.PHOTOMETRIC.RGB and RGB_as_structured_array
_logger.debug("Is RGB: %s" % is_rgb)
if is_rgb:
axes = axes[:-1]
names = ["R", "G", "B", "A"]
lastshape = shape[-1]
dtype = np.dtype({"names": names[:lastshape], "formats": [dtype] * lastshape})
shape = shape[:-1]
op = {tag.name: tag.value for tag in page.tags}
names = [axes_label_codes[axis] for axis in axes]
_logger.debug("Tiff tags list: %s" % op)
_logger.debug("Photometric: %s" % op["PhotometricInterpretation"])
_logger.debug("is_imagej: {}".format(page.is_imagej))
if hamamatsu_streak_axis_type not in [None, "functional", "data", "uniform"]:
raise ValueError(
"The `hamamatsu_streak_axis_type` argument only admits the "
"values `None`, `'data'`, `'functional'` and `'uniform'`."
)
try:
axes = _parse_scale_unit(
tiff,
page,
op,
shape,
force_read_resolution,
names,
hamamatsu_streak_axis_type,
)
except Exception:
_logger.info("Scale and units could not be imported")
axes = _build_axes_dictionaries(shape, names)
md = {
"General": {"original_filename": os.path.split(filename)[1]},
"Signal": {"signal_type": ""},
}
if "DateTime" in op:
dt = None
try:
dt = datetime.strptime(op["DateTime"], "%Y:%m:%d %H:%M:%S")
except Exception:
try:
if "ImageDescription" in op:
# JEOL SightX.
_dt = op["ImageDescription"]["DateTime"]
md["General"]["date"] = _dt[0:10]
# 1 extra digit for millisec should be removed
md["General"]["time"] = _dt[11:26]
md["General"]["time_zone"] = _dt[-6:]
dt = None
else:
dt = datetime.strptime(op["DateTime"], "%Y/%m/%d %H:%M")
except Exception:
_logger.info("Date/Time is invalid : " + op["DateTime"])
if dt is not None:
md["General"]["date"] = dt.date().isoformat()
md["General"]["time"] = dt.time().isoformat()
# Get the digital micrograph intensity axis
if _is_digital_micrograph(op):
intensity_axis = _intensity_axis_digital_micrograph(op)
else:
intensity_axis = {}
if "units" in intensity_axis:
md["Signal"]["quantity"] = intensity_axis["units"]
if "scale" in intensity_axis and "offset" in intensity_axis:
dic = {
"gain_factor": intensity_axis["scale"],
"gain_offset": intensity_axis["offset"],
}
md["Signal"]["Noise_properties"] = {"Variance_linear_model": dic}
data_args = handle, is_rgb
if lazy:
from dask import delayed
from dask.array import from_delayed
memmap = "memmap"
val = delayed(_load_data, pure=True)(*data_args, memmap=memmap, **kwds)
dc = from_delayed(val, dtype=dtype, shape=shape)
# TODO: maybe just pass the memmap from tiffile?
else:
dc = _load_data(*data_args, memmap=memmap, **kwds)
if _is_streak_hamamatsu(op):
op.update(
{"ImageDescriptionParsed": _get_hamamatsu_streak_description(tiff, op)}
)
metadata_mapping = get_metadata_mapping(page, op)
if "SightX_Notes" in op: # TODO move to get_jeol_sightx_mapping
md["General"]["title"] = op["SightX_Notes"]
return {
"data": dc,
"original_metadata": op,
"axes": axes,
"metadata": md,
"mapping": metadata_mapping,
}
def _load_data(handle, is_rgb, memmap=None, **kwds):
dc = handle.asarray(out=memmap)
_logger.debug("data shape: {0}".format(dc.shape))
if is_rgb:
from rsciio.utils import rgb_tools
dc = rgb_tools.regular_array2rgbx(dc)
return dc
def _axes_defaults():
"""Get default axes dictionaries, with offsets and scales"""
axes_labels = ["x", "y", "z"]
scales = {axis: 1.0 for axis in axes_labels}
offsets = {axis: 0.0 for axis in axes_labels}
units = {axis: None for axis in axes_labels}
return scales, offsets, units
def _is_force_readable(op, force_read_resolution) -> bool:
return force_read_resolution and "ResolutionUnit" in op and "XResolution" in op
def _axes_force_read(op, shape, names):
scales, offsets, units = _axes_defaults()
res_unit_tag = op["ResolutionUnit"]
if res_unit_tag != tifffile.RESUNIT.NONE:
_logger.debug("Resolution unit: %s" % res_unit_tag)
scales["x"], scales["y"] = _get_scales_from_x_y_resolution(op)
# conversion to µm:
if res_unit_tag == tifffile.RESUNIT.INCH:
for key in ["x", "y"]:
units[key] = "µm"
scales[key] = scales[key] * 25400
elif res_unit_tag == tifffile.RESUNIT.CENTIMETER:
for key in ["x", "y"]:
units[key] = "µm"
scales[key] = scales[key] * 10000
scales, offsets, units = _order_axes_by_name(names, scales, offsets, units)
axes = _build_axes_dictionaries(shape, names, scales, offsets, units)
return axes
def _is_fei(tiff) -> bool:
return "fei" in tiff.flags
def _axes_fei(tiff, op, shape, names):
_logger.debug("Reading FEI tif metadata")
scales, offsets, units = _axes_defaults()
op["fei_metadata"] = tiff.fei_metadata
try:
del op["FEI_HELIOS"]
except KeyError:
del op["FEI_SFEG"]
try:
scales["x"] = float(op["fei_metadata"]["Scan"]["PixelWidth"])
scales["y"] = float(op["fei_metadata"]["Scan"]["PixelHeight"])
units.update({"x": "m", "y": "m"})
except KeyError:
_logger.debug(
"No 'Scan' information found in FEI metadata; attempting to get pixel size "
"from 'IRBeam' metadata"
)
try:
scales["x"] = float(op["fei_metadata"]["IRBeam"]["HFW"]) / float(
op["fei_metadata"]["Image"]["ResolutionX"]
)
scales["y"] = float(op["fei_metadata"]["IRBeam"]["VFW"]) / float(
op["fei_metadata"]["Image"]["ResolutionY"]
)
units.update({"x": "m", "y": "m"})
except KeyError:
_logger.warning(
"Could not determine pixel size; resulting Signal will not be calibrated"
)
scales, offsets, units = _order_axes_by_name(names, scales, offsets, units)
axes = _build_axes_dictionaries(shape, names, scales, offsets, units)
return axes
def _is_zeiss(tiff) -> bool:
return "sem" in tiff.flags
def _axes_zeiss(tiff, op, shape, names):
_logger.debug("Reading Zeiss tif pixel_scale")
scales, offsets, units = _axes_defaults()
# op['CZ_SEM'][''] is containing structure of primary
# not described SEM parameters in SI units.
# tifffiles returns flattened version of the structure (as tuple)
# and the scale in it is at index 3.
# The scale is tied with physical display and needs to be multiplied
# with factor, which is the 1024 (1k) divide by horizontal pixel n.
# CZ_SEM tiff can contain resolution of lesser precision
# in the described tags as 'ap_image_pixel_size' and/or
# 'ap_pixel_size', which depending from ZEISS software version
# can be absent and thus is not used here.
scale_in_m = op["CZ_SEM"][""][3] * 1024 / tiff.pages[0].shape[1]
scales.update({"x": scale_in_m, "y": scale_in_m})
units.update({"x": "m", "y": "m"})
scales, offsets, units = _order_axes_by_name(names, scales, offsets, units)
axes = _build_axes_dictionaries(shape, names, scales, offsets, units)
return axes
# return scales, offsets, units, intensity_axis
def _is_tvips(tiff) -> bool:
return "tvips" in tiff.flags
def _axes_tvips(tiff, op, shape, names):
_logger.debug("Reading TVIPS tif metadata")
scales, offsets, units = _axes_defaults()
if "PixelSizeX" in op["TVIPS"] and "PixelSizeY" in op["TVIPS"]:
_logger.debug("getting TVIPS scale from PixelSizeX")
scales["x"] = op["TVIPS"]["PixelSizeX"]
scales["y"] = op["TVIPS"]["PixelSizeY"]
units.update({"x": "nm", "y": "nm"})
else:
_logger.debug("getting TVIPS scale from XYResolution")
scales["x"], scales["y"] = _get_scales_from_x_y_resolution(op, factor=1e-2)
units.update({"x": "m", "y": "m"})
scales, offsets, units = _order_axes_by_name(names, scales, offsets, units)
axes = _build_axes_dictionaries(shape, names, scales, offsets, units)
return axes
def _is_olympus_sis(page) -> bool:
return page.is_sis
def _axes_olympus_sis(page, tiff, op, shape, names):
_logger.debug("Reading Olympus SIS tif metadata")
scales, offsets, units = _axes_defaults()
sis_metadata = {}
for tag_number in [33471, 33560]:
try:
sis_metadata = page.tags[tag_number].value
except Exception:
pass
op["Olympus_SIS_metadata"] = sis_metadata
scales["x"] = round(float(sis_metadata["pixelsizex"]), 15)
scales["y"] = round(float(sis_metadata["pixelsizey"]), 15)
units.update({"x": "m", "y": "m"})
scales, offsets, units = _order_axes_by_name(names, scales, offsets, units)
axes = _build_axes_dictionaries(shape, names, scales, offsets, units)
return axes
def _is_jeol_sightx(op) -> bool:
return op.get("Make", None) == "JEOL Ltd."
def _axes_jeol_sightx(tiff, op, shape, names):
# convert xml text to dictionary of tiff op['ImageDescription']
import xml.etree.ElementTree as ET
from box import Box
from rsciio.utils.tools import XmlToDict
scales, offsets, units = _axes_defaults()
jeol_xml = "".join(
[line.strip(" \r\n\t\x01\x00") for line in op["ImageDescription"].split("\n")]
)
jeol_xml_obj = ET.fromstring(jeol_xml)
xml_to_dict = XmlToDict()
jeol_dict = Box(xml_to_dict.dictionarize(jeol_xml_obj))
op["ImageDescription"] = jeol_dict["TemReporter"]
eos = op["ImageDescription"]["Eos"]["EosMode"]
illumi = op["ImageDescription"]["IlluminationSystem"]
imaging = op["ImageDescription"]["ImageFormingSystem"]
# TEM/STEM
is_STEM = eos == "modeASID"
mode_strs = []
mode_strs.append("STEM" if is_STEM else "TEM")
mode_strs.append(illumi["ImageField"][4:]) # Bright Fiels?
if is_STEM:
mode_strs.append(imaging["ScanningImageFormingMode"][4:])
else:
mode_strs.append(imaging["ImageFormingMode"][4:])
mode_strs.append(imaging["SelectorString"]) # Mag / Camera Length
op["SightX_Notes"] = ", ".join(mode_strs)
res_unit_tag = op["ResolutionUnit"]
if res_unit_tag == tifffile.RESUNIT.INCH:
scale = 0.0254 # inch/m
else:
scale = 0.01 # tiff scaling, cm/m
# TEM - MAG
if (eos == "eosTEM") and (imaging["ModeString"] == "MAG"):
mag = float(imaging["SelectorValue"])
scales["x"], scales["y"] = _get_scales_from_x_y_resolution(
op, factor=scale / mag * 1e9
)
units = {"x": "nm", "y": "nm", "z": "nm"}
# TEM - DIFF
elif (eos == "eosTEM") and (imaging["ModeString"] == "DIFF"):
def wave_len(ht):
m_e = 9.1093837015e-31
e_c = 1.602176634e-19
c = 299792458.0
h = 6.62607015e-34
momentum = 2 * m_e * e_c * ht * (1 + e_c * ht / (2 * m_e * c**2))
return h / np.sqrt(momentum)
camera_len = float(imaging["SelectorValue"])
ht = float(op["ImageDescription"]["ElectronGun"]["AccelerationVoltage"])
if imaging["SelectorUnitString"] == "mm": # convert to "m"
camera_len /= 1000
elif imaging["SelectorUnitString"] == "cm": # convert to "m"
camera_len /= 100
scale /= camera_len * wave_len(ht) * 1e9 # in nm
scales["x"], scales["y"] = _get_scales_from_x_y_resolution(op, factor=scale)
units = {"x": "1 / nm", "y": "1 / nm", "z": None}
scales, offsets, units = _order_axes_by_name(names, scales, offsets, units)
axes = _build_axes_dictionaries(shape, names, scales, offsets, units)
return axes
def _is_streak_hamamatsu(op) -> bool:
"""Determines whether a .tiff page is likely to be a hamamatsu
streak file based on the original op content.
"""
is_hamatif = True
# Check that the original op has an "Artist" field with "Copyright Hamamatsu"
if "Artist" not in op:
is_hamatif = False
return is_hamatif
else:
artist = op["Artist"]
if not artist.startswith("Copyright Hamamatsu"):
is_hamatif = False
return is_hamatif
# Check that the original op has a "Software" corresponding to "HPD-TA"
if "Software" not in op:
is_hamatif = False
return is_hamatif
else:
software = op["Software"]
if not software.startswith("HPD-TA"):
is_hamatif = False
return is_hamatif
def _get_hamamatsu_streak_description(tiff, op):
"""Extract a dictionary recursively from the ImageDescription
Metadata field in a Hamamatsu Streak .tiff file"""
desc = op["ImageDescription"]
dict_meta = {}
reader = csv.reader(desc.splitlines(), delimiter=",", quotechar='"')
for row in reader:
key = row[0].strip(" []")
key_dict = {}
for element in row[1:]:
spl = element.split("=")
if len(spl) == 2:
key_dict[spl[0]] = spl[1].strip('"')
dict_meta[key] = key_dict
# Scaling entry
scaling = dict_meta["Scaling"]
# Address in file where the X axis is saved. If x axis is "Other" (no
# calibrated spectral axis saved in file), it just loads the axis as pixels
if scaling["ScalingXScalingFile"].startswith("Other"):
x_scale_address = None
else:
x_scale_address = int(re.findall(r"\d+", scaling["ScalingXScalingFile"])[0])
xlen = op["ImageWidth"]
# If focus mode is used there is no Y axis
if scaling["ScalingYScalingFile"].startswith("Focus mode"):
y_scale_address = None
else:
y_scale_address = int(re.findall(r"\d+", scaling["ScalingYScalingFile"])[0])
ylen = op["ImageLength"]
# Accessing the file as a binary
fh = tiff.filehandle
# Reading the x axis
if x_scale_address is None:
xax = np.arange(xlen)
else:
fh.seek(x_scale_address, 0)
xax = np.fromfile(fh, dtype="f", count=xlen)
if y_scale_address is None:
yax = np.arange(ylen)
else:
fh.seek(y_scale_address, 0)
yax = np.fromfile(fh, dtype="f", count=ylen)
dict_meta["Scaling"]["ScalingXaxis"] = xax
dict_meta["Scaling"]["ScalingYaxis"] = yax
return dict_meta
def _axes_hamamatsu_streak(tiff, op, shape, names, hamamatsu_streak_axis_type):
_logger.debug("Reading Hamamatsu Streak Map tif metadata")
if hamamatsu_streak_axis_type is None:
hamamatsu_streak_axis_type = "uniform"
warnings.warn(
f"{tiff} contain a non linear axis. By default, "
f"a linearized version is initialised, which can "
f"induce errors. Use the `hamamatsu_streak_axis_type` keyword to load "
f"either a parabolic functional axis using `hamamatsu_streak_axis_type='functional'`, "
f"a data axis using `hamamatsu_streak_axis_type='data'`, or use `hamamatsu_streak_axis_type='uniform'`to "
f"linearize the axis and make this warning disappear",
UserWarning,
)
# Parsing the Metadata
desc = _get_hamamatsu_streak_description(tiff, op)
# Getting the raw axes
xax = desc["Scaling"]["ScalingXaxis"]
yax = desc["Scaling"]["ScalingYaxis"]
# Axes are initialised as a list of empty dictionaries
axes = [{}] * len(names)
# The width axis is always linear
[xsc, xof] = np.polyfit(np.arange(len(xax)), xax, 1)
i = names.index("width")
axes[i] = {
"size": shape[i],
"name": "width",
"units": desc["Scaling"]["ScalingXUnit"],
"scale": xsc,
"offset": xof,
}
# The height axis is changing
i = names.index("height")
axes[i] = {"name": "height", "units": desc["Scaling"]["ScalingYUnit"]}
if hamamatsu_streak_axis_type == "uniform":
# Uniform axis initialisation
[ysc, yof] = np.polyfit(np.arange(len(yax)), yax, 1)
axes[i].update(
{
"scale": ysc,
"offset": yof,
"size": shape[i],
}
)
elif hamamatsu_streak_axis_type == "data":
# Data axis initialisation
axes[i].update({"axis": yax})
elif hamamatsu_streak_axis_type == "functional":
# Functional axis initialisation
xaxis = {"scale": 1, "offset": 0, "size": len(yax)}
poly = np.polyfit(np.arange(len(yax)), yax, 3)
axes[i].update(
{
"size": len(yax),
"x": xaxis,
"expression": "a*x**3+b*x**2+c*x+d",
"a": poly[0],
"b": poly[1],
"c": poly[2],
"d": poly[3],
}
)
return axes
def _is_imagej(tiff) -> bool:
return "imagej" in tiff.flags
def _add_axes_imagej(tiff, op, scales, offsets, units):
imagej_metadata = tiff.imagej_metadata
if "ImageJ" in imagej_metadata:
_logger.debug("Reading ImageJ tif metadata")
# ImageJ write the unit in the image description
if "unit" in imagej_metadata:
if imagej_metadata["unit"] == "micron":
units.update({"x": "µm", "y": "µm"})
scales["x"], scales["y"] = _get_scales_from_x_y_resolution(op)
if "spacing" in imagej_metadata:
scales["z"] = imagej_metadata["spacing"]
return scales, offsets, units
def _is_digital_micrograph(op) -> bool:
# for files containing DM metadata
tags = [
"65003",
"65004",
"65005",
"65009",
"65010",
"65011",
"65006",
"65007",
"65008",
"65022",
"65024",
"65025",
]
search_result = [tag in op for tag in tags]
return any(search_result)
def _intensity_axis_digital_micrograph(op, intensity_axis=None):
if intensity_axis is None:
intensity_axis = {}
if "65022" in op:
intensity_axis["units"] = op["65022"] # intensity units
if "65024" in op:
intensity_axis["offset"] = op["65024"] # intensity offset
if "65025" in op:
intensity_axis["scale"] = op["65025"] # intensity scale
return intensity_axis
def _add_axes_digital_micrograph(op, scales, offsets, units):
if "65003" in op:
_logger.debug("Reading Gatan DigitalMicrograph tif metadata")
units["y"] = op["65003"] # x units
if "65004" in op:
units["x"] = op["65004"] # y units
if "65005" in op:
units["z"] = op["65005"] # z units
if "65009" in op:
scales["y"] = op["65009"] # x scales
if "65010" in op:
scales["x"] = op["65010"] # y scales
if "65011" in op:
scales["z"] = op["65011"] # z scales
if "65006" in op:
offsets["y"] = op["65006"] # x offset
if "65007" in op:
offsets["x"] = op["65007"] # y offset
if "65008" in op:
offsets["z"] = op["65008"] # z offset
return scales, offsets, units
def _parse_scale_unit(
tiff, page, op, shape, force_read_resolution, names, hamamatsu_streak_axis_type
):
# Force reading always has priority
if _is_force_readable(op, force_read_resolution):
axes = _axes_force_read(op, shape, names)
return axes
# Other axes readers can change position if you need to do it
elif _is_fei(tiff):
axes = _axes_fei(tiff, op, shape, names)
return axes
elif _is_zeiss(tiff):
axes = _axes_zeiss(tiff, op, shape, names)
return axes
elif _is_tvips(tiff):
axes = _axes_tvips(tiff, op, shape, names)
return axes
elif _is_olympus_sis(page):
axes = _axes_olympus_sis(page, tiff, op, shape, names)
return axes
elif _is_jeol_sightx(op):
axes = _axes_jeol_sightx(tiff, op, shape, names)
return axes
elif _is_streak_hamamatsu(op):
axes = _axes_hamamatsu_streak(
tiff, op, shape, names, hamamatsu_streak_axis_type
)
return axes
# Axes are otherwise set to defaults
else:
scales, offsets, units = _axes_defaults()
# Axes descriptors can be additionally parsed from digital micrograph or imagej-style files
if _is_digital_micrograph(op):
scales, offsets, units = _add_axes_digital_micrograph(
op, scales, offsets, units
)
if _is_imagej(tiff):
scales, offsets, units = _add_axes_imagej(tiff, op, scales, offsets, units)
scales, offsets, units = _order_axes_by_name(names, scales, offsets, units)
axes = _build_axes_dictionaries(shape, names, scales, offsets, units)
return axes
def _get_scales_from_x_y_resolution(op, factor=1.0):
scales = (
op["YResolution"][1] / op["YResolution"][0] * factor,
op["XResolution"][1] / op["XResolution"][0] * factor,
)
return scales
def _get_tags_dict(signal, extratags=[], factor=int(1e8)):
"""
Get the tags to export the scale and the unit to be used in Digital
Micrograph and ImageJ.
"""
axes = signal["axes"]
nav_dim = len([ax for ax in axes if ax["navigate"]])
scales, units, offsets = _get_scale_unit(axes, encoding=None)
_logger.debug("{0}".format(units))
tags_dict = _get_imagej_kwargs(scales, units, nav_dim, factor=factor)
scales, units, offsets = _get_scale_unit(axes, encoding="latin-1")
tags_dict["extratags"].extend(
_get_dm_kwargs_extratag(signal, scales, units, offsets, nav_dim)
)
tags_dict["extratags"].extend(extratags)
return tags_dict
def _get_imagej_kwargs(scales, units, nav_dim, factor=int(1e8)):
resolution = (
(factor, int(scales[-1] * factor)),
(factor, int(scales[-2] * factor)),
)
if nav_dim == 1: # For stacks
spacing = f"{scales[0]}"
else:
spacing = None
description_string = _imagej_description(unit=units[1], spacing=spacing)
_logger.debug("Description tag: {description_string}")
extratag = [(270, "s", 1, description_string, False)]
return {"resolution": resolution, "extratags": extratag}
def _get_dm_kwargs_extratag(signal, scales, units, offsets, nav_dim):
extratags = [
(65003, "s", 3, units[-1], False), # x unit
(65004, "s", 3, units[-2], False), # y unit
(65006, "d", 1, offsets[-1], False), # x origin
(65007, "d", 1, offsets[-2], False), # y origin
(65009, "d", 1, float(scales[-1]), False), # x scale
(65010, "d", 1, float(scales[-2]), False),
] # y scale
# (65012, 's', 3, units[-1], False), # x unit full name
# (65013, 's', 3, units[-2], False)] # y unit full name
# (65015, 'i', 1, 1, False), # don't know
# (65016, 'i', 1, 1, False), # don't know
# (65026, 'i', 1, 1, False)] # don't know
md = DTBox(signal["metadata"], box_dots=True)
if "Signal.quantity" in md:
intensity_units = md["Signal"].get("quantity", "")
extratags.extend(
[
(65022, "s", 3, intensity_units, False),
(65023, "s", 3, intensity_units, False),
]
)
dic = md.get("Signal.Noise_properties.Variance_linear_model", None)
if dic:
try:
intensity_offset = dic.gain_offset
intensity_scale = dic.gain_factor
except Exception:
_logger.info(
"The scale or the offset of the 'intensity axes'"
"couldn't be retrieved, please report the bug."
)
intensity_offset = 0.0
intensity_scale = 1.0
extratags.extend(
[
(65024, "d", 1, intensity_offset, False),
(65025, "d", 1, intensity_scale, False),
]
)
if nav_dim > 0:
extratags.extend(
[
(65005, "s", 3, units[0], False), # z unit
(65008, "d", 1, offsets[0], False), # z origin
(65011, "d", 1, float(scales[0]), False), # z scale
# (65014, 's', 3, units[0], False), # z unit full name
(65017, "i", 1, 1, False),
]
)
return extratags
def _get_scale_unit(axes, encoding=None):
"""
Return a list of scales and units, the length of the list is equal to
the signal dimension.
Parameters
----------
axes : list
List of dictionary of axes
Returns
-------
scales, units, offsets : list
List of scales, units and offsets
"""
scales = [ax["scale"] for ax in axes]
units = [ax["units"] for ax in axes]
offsets = [ax["offset"] for ax in axes]
for i, unit in enumerate(units):
if unit is None:
units[i] = ""
if encoding is not None:
units[i] = units[i].encode(encoding)
return scales, units, offsets
def _imagej_description(version="1.11a", **kwargs):
"""Return a string that will be used by ImageJ to read the unit when
appropriate arguments are provided"""
result = ["ImageJ=%s" % version]
append = []
if kwargs["spacing"] is None:
kwargs.pop("spacing")
for key, value in list(kwargs.items()):
if value == "µm":
value = "micron"
if value == "Å":
value = "angstrom"
append.append(f"{key.lower()}={value}")
return "\n".join(result + append + [""])
def _parse_beam_current_FEI(value):
try:
return float(value) * 1e9
except ValueError:
return None
def _parse_beam_energy_FEI(value):
try:
return float(value) * 1e-3
except ValueError:
return None
def _parse_working_distance_FEI(value):
try:
return float(value) * 1e3
except ValueError:
return None
def _parse_tuple_Zeiss(tup):
value = tup[1]
try:
return float(value)
except ValueError:
return value
def _parse_tuple_Zeiss_with_units(tup, to_units=None):
(value, parse_units) = tup[1:]
if to_units is not None:
v = value * _UREG(parse_units)
value = float("%.6e" % v.to(to_units).magnitude)
return value
def _parse_tvips_time(value):
# assuming this is the time in second
return str(timedelta(seconds=int(value)))
def _parse_tvips_date(value):
# get a number, such as 132122901, no idea, what it is... this is not
# an excel serial, nor an unix time...
return None
def _parse_string(value):
if value == "":
return None
return value
mapping_fei = {
"fei_metadata.Beam.HV": (
"Acquisition_instrument.SEM.beam_energy",
_parse_beam_energy_FEI,
),
"fei_metadata.Stage.StageX": ("Acquisition_instrument.SEM.Stage.x", None),
"fei_metadata.Stage.StageY": ("Acquisition_instrument.SEM.Stage.y", None),
"fei_metadata.Stage.StageZ": ("Acquisition_instrument.SEM.Stage.z", None),
"fei_metadata.Stage.StageR": ("Acquisition_instrument.SEM.Stage.rotation", None),
"fei_metadata.Stage.StageT": ("Acquisition_instrument.SEM.Stage.tilt", None),
"fei_metadata.Stage.WorkingDistance": (
"Acquisition_instrument.SEM.working_distance",
_parse_working_distance_FEI,
),
"fei_metadata.Scan.Dwelltime": ("Acquisition_instrument.SEM.dwell_time", None),
"fei_metadata.EBeam.BeamCurrent": (
"Acquisition_instrument.SEM.beam_current",
_parse_beam_current_FEI,
),
"fei_metadata.System.SystemType": ("Acquisition_instrument.SEM.microscope", None),
"fei_metadata.User.Date": (
"General.date",
lambda x: parser.parse(x).date().isoformat(),
),
"fei_metadata.User.Time": (
"General.time",
lambda x: parser.parse(x).time().isoformat(),
),
"fei_metadata.User.User": ("General.authors", None),
}
def get_jeol_sightx_mapping(op):
mapping = {
"ImageDescription.ElectronGun.AccelerationVoltage": (
"Acquisition_instrument.TEM.beam_energy",
lambda x: float(x) * 0.001,
), # keV
"ImageDescription.ElectronGun.BeamCurrent": (
"Acquisition_instrument.TEM.beam_current",
lambda x: float(x) * 0.001,
), # nA
"ImageDescription.Instruments": ("Acquisition_instrument.TEM.microscope", None),
# Gonio Stage
# depends on sample holder
# ("Acquisition_instrument.TEM.Stage.rotation", None), #deg
"ImageDescription.GonioStage.StagePosition.TX": (
"Acquisition_instrument.TEM.Stage.tilt_alpha",
None,
), # deg
"ImageDescription.GonioStage.StagePosition.TY": (
"Acquisition_instrument.TEM.Stage.tilt_beta",
None,
), # deg
# ToDo: MX(Motor)+PX(Piezo), MY+PY should be used
# 'ImageDescription.GonioStage.StagePosition.MX':
# ("Acquisition_instrument.TEM.Stage.x", lambda x: float(x)*1E-6), # mm
# 'ImageDescription.GonioStage.StagePosition.MY':
# ("Acquisition_instrument.TEM.Stage.y", lambda x: float(x)*1E-6), # mm
"ImageDescription.GonioStage.MZ": (
"Acquisition_instrument.TEM.Stage.z",
lambda x: float(x) * 1e-6,
), # mm
# ("General.notes", None),
# ("General.title", None),
"ImageDescription.Eos.EosMode": (
"Acquisition_instrument.TEM.acquisition_mode",
lambda x: "STEM" if x == "eosASID" else "TEM",
),
"ImageDescription.ImageFormingSystem.SelectorValue": None,
}
if op["ImageDescription"]["ImageFormingSystem"]["ModeString"] == "DIFF":
mapping["ImageDescription.ImageFormingSystem.SelectorValue"] = (
"Acquisition_instrument.TEM.camera_length",
None,
)
else: # Mag Mode
mapping["ImageDescription.ImageFormingSystem.SelectorValue"] = (
"Acquisition_instrument.TEM.magnification",
None,
)
return mapping
mapping_cz_sem = {
"CZ_SEM.ap_actualkv": (
"Acquisition_instrument.SEM.beam_energy",
_parse_tuple_Zeiss,
),
"CZ_SEM.ap_mag": ("Acquisition_instrument.SEM.magnification", _parse_tuple_Zeiss),
"CZ_SEM.ap_stage_at_x": (
"Acquisition_instrument.SEM.Stage.x",
lambda tup: _parse_tuple_Zeiss_with_units(tup, to_units="mm"),
),
"CZ_SEM.ap_stage_at_y": (
"Acquisition_instrument.SEM.Stage.y",
lambda tup: _parse_tuple_Zeiss_with_units(tup, to_units="mm"),
),
"CZ_SEM.ap_stage_at_z": (
"Acquisition_instrument.SEM.Stage.z",
lambda tup: _parse_tuple_Zeiss_with_units(tup, to_units="mm"),
),
"CZ_SEM.ap_stage_at_r": (
"Acquisition_instrument.SEM.Stage.rotation",
_parse_tuple_Zeiss,
),
"CZ_SEM.ap_stage_at_t": (
"Acquisition_instrument.SEM.Stage.tilt",
_parse_tuple_Zeiss,
),
"CZ_SEM.ap_wd": (
"Acquisition_instrument.SEM.working_distance",
lambda tup: _parse_tuple_Zeiss_with_units(tup, to_units="mm"),
),
"CZ_SEM.dp_dwell_time": (
"Acquisition_instrument.SEM.dwell_time",
lambda tup: _parse_tuple_Zeiss_with_units(tup, to_units="s"),
),
"CZ_SEM.ap_iprobe": (
"Acquisition_instrument.SEM.beam_current",
lambda tup: _parse_tuple_Zeiss_with_units(tup, to_units="nA"),
),
"CZ_SEM.dp_detector_type": (
"Acquisition_instrument.SEM.Detector.detector_type",
_parse_tuple_Zeiss,
),
"CZ_SEM.sv_serial_number": (
"Acquisition_instrument.SEM.microscope",
_parse_tuple_Zeiss,
),
"CZ_SEM.ap_date": (
"General.date",
lambda tup: parser.parse(tup[1]).date().isoformat(),
),
"CZ_SEM.ap_time": (
"General.time",
lambda tup: parser.parse(tup[1]).time().isoformat(),
),
"CZ_SEM.sv_user_name": ("General.authors", _parse_tuple_Zeiss),
}
def get_tvips_mapping(mapped_magnification):
mapping_tvips = {
"TVIPS.TemMagnification": (
"Acquisition_instrument.TEM.%s" % mapped_magnification,
None,
),
"TVIPS.CameraType": ("Acquisition_instrument.TEM.Detector.Camera.name", None),
"TVIPS.ExposureTime": (
"Acquisition_instrument.TEM.Detector.Camera.exposure",
lambda x: float(x) * 1e-3,
),
"TVIPS.TemHighTension": (
"Acquisition_instrument.TEM.beam_energy",
lambda x: float(x) * 1e-3,
),
"TVIPS.Comment": ("General.notes", _parse_string),
"TVIPS.Date": ("General.date", _parse_tvips_date),
"TVIPS.Time": ("General.time", _parse_tvips_time),
"TVIPS.TemStagePosition": (
"Acquisition_instrument.TEM.Stage",
lambda stage: {
"x": stage[0] * 1e3,
"y": stage[1] * 1e3,
"z": stage[2] * 1e3,
"tilt_alpha": stage[3],
"tilt_beta": stage[4],
},
),
}
return mapping_tvips
mapping_olympus_sis = {
"Olympus_SIS_metadata.magnification": (
"Acquisition_instrument.TEM.magnification",
None,
),
"Olympus_SIS_metadata.cameraname": (
"Acquisition_instrument.TEM.Detector.Camera.name",
None,
),
}
def get_metadata_mapping(tiff_page, op):
if tiff_page.is_fei:
return mapping_fei
elif tiff_page.is_sem:
return mapping_cz_sem
elif tiff_page.is_tvips:
try:
if op["TVIPS"]["TemMode"] == 3:
mapped_magnification = "camera_length"
else:
mapped_magnification = "magnification"
except KeyError:
mapped_magnification = "magnification"
return get_tvips_mapping(mapped_magnification)
elif tiff_page.is_sis:
return mapping_olympus_sis
elif op.get("Make", None) == "JEOL Ltd.":
return get_jeol_sightx_mapping(op)
else:
return {}
|