File: _api.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (795 lines) | stat: -rw-r--r-- 31,860 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

import importlib.util
import logging
import xml.etree.ElementTree as ET
from collections import defaultdict
from copy import deepcopy
from pathlib import Path

import numpy as np
from numpy.polynomial.polynomial import polyfit

from rsciio._docstrings import FILENAME_DOC, LAZY_DOC, RETURNS_DOC

_logger = logging.getLogger(__name__)


def _error_handling_find_location(len_entry, name):
    if len_entry > 1:
        _logger.error(  # pragma: no cover
            f"File contains multiple positions to read {name} from."
            "                            "
            "The first location is chosen."
        )
    elif len_entry == 0:
        raise RuntimeError(
            f"Could not find location to read {name} from."
        )  # pragma: no cover


def _convert_float(input):
    """Handle None-values when converting strings to float."""
    if input is None:
        return None  # pragma: no cover
    else:
        return float(input)


def _remove_none_from_dict(dict_in):
    """Recursive removal of None-values from a dictionary."""
    for key, value in list(dict_in.items()):
        if isinstance(value, dict):
            _remove_none_from_dict(value)
        elif value is None:
            del dict_in[key]


def _etree_to_dict(t, only_top_lvl=False):
    """Recursive conversion from xml.etree.ElementTree to a dictionary."""
    d = {t.tag: {} if t.attrib else None}
    if not only_top_lvl:
        children = list(t)
        if children:
            dd = defaultdict(list)
            for dc in map(_etree_to_dict, children):
                for k, v in dc.items():
                    dd[k].append(v)
            d = {t.tag: {k: v[0] if len(v) == 1 else v for k, v in dd.items()}}
        if t.text:
            if children or t.attrib:
                ## in this case, the text is ignored
                ## if children=True -> text is just empty space in test data
                ## if t.attrib=True and children=False doesn't occur in test data
                pass
            else:
                d[t.tag] = t.text.strip()
    if t.attrib:
        d[t.tag].update((k, v) for k, v in t.attrib.items())
    return d


def _process_info_serialized(head):
    """Recursive processing designed for the InfoSerialized entry from the original_metadata."""
    result = {}
    if not isinstance(head, list):
        head = [head]
    save_name_for_rename = set()
    for idx, entry in enumerate(head):
        entry_name = entry["Name"]
        if entry["Groups"] is not None:
            result[entry_name] = _process_info_serialized(entry["Groups"]["Group"])
        else:
            entry_dict_old = entry["Items"]["Item"]
            entry_dict_new = dict()
            if isinstance(entry_dict_old, list):
                for item in entry_dict_old:
                    entry_dict_new[item["Name"]] = item["Value"]
            elif isinstance(entry_dict_old, dict):
                entry_dict_new[entry_dict_old["Name"]] = entry_dict_old["Value"]
            if entry_name in result:
                save_name_for_rename.add(entry_name)
                entry_name += str(idx + 1)
            result[entry_name] = entry_dict_new
    for name in save_name_for_rename:
        result[name + "1"] = result.pop(name)
    return result


class TrivistaTVFReader:
    """Class to read Trivista's .tvf-files using xml.etree.ElementTree.

    Attributes
    ----------
    data, metadata, original_metadata, axes
    """

    def __init__(
        self,
        file_path,
        use_uniform_signal_axis=False,
        glued_data_as_stack=False,
        filter_original_metadata=True,
    ):
        self._file_path = file_path
        self._use_uniform_signal_axis = use_uniform_signal_axis
        self._glued_data_as_stack = glued_data_as_stack

        (
            data_head,
            filtered_original_metadata,
            unfiltered_original_metadata,
        ) = self.parse_file_structure(filter_original_metadata)

        self._num_datasets = int(data_head.findall("Childs")[0].attrib["Count"])
        data, time, signal_axis = self.get_data_and_signal(data_head=data_head)

        self.axes = self.set_axes(
            axis_head=filtered_original_metadata["Document"]["InfoSerialized"],
            signal_axis=signal_axis,
            time=time,
        )

        self.data = self.reshape_data(data, self.axes)
        self.metadata = self.map_metadata(filtered_original_metadata)

        if filter_original_metadata:
            self.original_metadata = filtered_original_metadata
        else:
            self.original_metadata = unfiltered_original_metadata

    def parse_file_structure(self, filter_original_metadata):
        """Initial parse through the file to extract original metadata and the data location.

        In general the file structure looks something like this.
        - root_level
            - root_level metadata
                - FileInfoSerialized
            - Document
                - data/signal_axis
                - document metadata
                    - InfoSerialized
            - Hardware
                - hardware metadata

        Most of the usable metadata is in the InfoSerialized section.
        InfoSerialized and FileInfoSerialized need to be converted extra
        with ET.fromstring().

        The metadata from the hardware section contains information for all
        available hardware (i.e. multiple objectives even though only one is used.
        In the filtering process, the metadata of the actual used objective is extracted).

        Parameters
        ----------
        filter_original_metadata: bool
            if True, then unfiltered_original_metadata will
            contain a copy of the original_metadata before
            processing InfoSerialized and filtering the metadata
            from the Hardware section. Otherwise unfiltered_original_metadata
            will be empty.
            Independent of this parameter, the filtered and processed
            metadata is stored in filtered_original_metadata.
            This ensures that the metadata mapping doesn't
            depend on this setting.

        Returns
        -------
        data_head: ET
            file position where data/signal can be read from

        filtered_original_metadata: dict
            filtered + processed metadata

        unfiltered_original_metadata: dict
        """
        filtered_original_metadata = dict()
        unfiltered_original_metadata = dict()
        et_root = ET.parse(self._file_path).getroot()

        ## root level metadata
        filtered_original_metadata.update(_etree_to_dict(et_root, only_top_lvl=True))
        et_fileInfoSerialized = ET.fromstring(
            filtered_original_metadata["XmlMain"]["FileInfoSerialized"]
        )
        fileInfoSerialized = _etree_to_dict(et_fileInfoSerialized, only_top_lvl=False)
        filtered_original_metadata["XmlMain"]["FileInfoSerialized"] = fileInfoSerialized

        ## Documents / Document section
        data_head = et_root[1][0]
        filtered_original_metadata.update(_etree_to_dict(data_head, only_top_lvl=True))
        et_infoSerialized = ET.fromstring(
            filtered_original_metadata["Document"]["InfoSerialized"]
        )
        infoSerialized = _etree_to_dict(et_infoSerialized, only_top_lvl=False)

        ## Hardware section
        metadata_head = et_root[0]
        metadata_hardware = _etree_to_dict(metadata_head, only_top_lvl=False)

        if not filter_original_metadata:
            unfiltered_original_metadata = deepcopy(filtered_original_metadata)
            unfiltered_original_metadata["Document"]["InfoSerialized"] = deepcopy(
                infoSerialized
            )
            unfiltered_original_metadata.update(deepcopy(metadata_hardware))

        ## processing/filtering
        infoSerialized_processed = _process_info_serialized(
            infoSerialized["Info"]["Groups"]["Group"]
        )
        filtered_original_metadata["Document"]["InfoSerialized"] = (
            infoSerialized_processed
        )

        ## these methods alter metadata_hardware
        self._filter_laser_metadata(infoSerialized_processed, metadata_hardware)
        self._filter_detector_metadata(infoSerialized_processed, metadata_hardware)
        self._filter_objectives_metadata(metadata_hardware)
        self._filter_spectrometers_metadata(infoSerialized_processed, metadata_hardware)

        filtered_original_metadata.update(metadata_hardware)

        return data_head, filtered_original_metadata, unfiltered_original_metadata

    @staticmethod
    def _filter_laser_metadata(infoSerialized_processed, metadata_hardware):
        """Filter LightSources section (Laser) via wavelength if possible."""
        for laser in metadata_hardware["Hardware"]["LightSources"]["LightSource"]:
            try:
                calibration_wl = float(
                    infoSerialized_processed["Calibration"]["Laser_Wavelength"]
                )
                laser_wl = float(laser["Wavelengths"]["Value_0"])
            except KeyError:
                pass
            else:
                if np.isclose(calibration_wl, laser_wl) and not np.isclose(laser_wl, 0):
                    metadata_hardware["Hardware"]["LightSources"]["LightSource"] = laser

    @staticmethod
    def _filter_detector_metadata(infoSerialized_processed, metadata_hardware):
        """Filter Detector section via name"""
        for detector in metadata_hardware["Hardware"]["Detectors"]["Detector"]:
            if detector["Name"] == infoSerialized_processed["Detector"]["Name"]:
                metadata_hardware["Hardware"]["Detectors"]["Detector"] = detector

    @staticmethod
    def _filter_objectives_metadata(metadata_hardware):
        """Filter microscope section (objective) via isEnabled tag"""
        for microscope in metadata_hardware["Hardware"]["Microscopes"]["Microscope"]:
            for objective in microscope["Objectives"]["Objective"]:
                if objective["IsEnabled"] == "True":
                    metadata_hardware["Hardware"]["Microscopes"]["Microscope"] = (
                        microscope
                    )
                    metadata_hardware["Hardware"]["Microscopes"]["Microscope"][
                        "Objectives"
                    ]["Objective"] = objective

    @staticmethod
    def _filter_spectrometers_metadata(infoSerialized_processed, metadata_hardware):
        """Filter spectrometers via serialnumbers"""
        ## get serialnumbers for all used spectrometers
        ## contrary to the other parts, multiple spectrometers can be used
        spectrometer_serial_numbers = []
        spectrometer_serialized_list = []
        for key, val in infoSerialized_processed["Spectrometers"].items():
            spectrometer_serial_numbers.append(val["Serialnumber"])
            spectrometer_serialized_list.append(key)

        ## filter spectrometers via serialnumber
        ## result for one spectrometer:
        ## Spectrometers
        ##     - Spectrometer
        ##         - ...
        ## result for 2 spectrometers:
        ## Spectrometers
        ##     - Spectrometer1
        ##         - ...
        ##     - Spectrometer2
        ##         - ...
        for spectrometer in metadata_hardware["Hardware"]["Spectrometers"][
            "Spectrometer"
        ]:
            if spectrometer["Serialnumber"] in spectrometer_serial_numbers:
                idx = spectrometer_serial_numbers.index(spectrometer["Serialnumber"])
                spectrometer_name = spectrometer_serialized_list[idx]
                metadata_hardware["Hardware"]["Spectrometers"][spectrometer_name] = (
                    spectrometer
                )
                ## filter grating via groove density
                gratings_root = spectrometer["Gratings"]["Grating"]
                for grating in gratings_root:
                    if (
                        grating["GrooveDensity"]
                        == infoSerialized_processed["Spectrometers"][spectrometer_name][
                            "Groove_Density"
                        ]
                    ):
                        metadata_hardware["Hardware"]["Spectrometers"][
                            spectrometer_name
                        ]["Gratings"]["Grating"] = grating
        if not spectrometer_name == "Spectrometer":
            del metadata_hardware["Hardware"]["Spectrometers"]["Spectrometer"]

    def _map_general_md(self, original_metadata):
        general = {}
        general["title"] = self._file_path.name.split(".")[0]
        general["original_filename"] = self._file_path.name
        try:
            date, time = original_metadata["Document"]["RecordTime"].split(" ")
        except KeyError:  # pragma: no cover
            pass  # pragma: no cover
        else:
            date_split = date.split("/")
            date = date_split[-1] + "-" + date_split[0] + "-" + date_split[1]
            general["date"] = date
            general["time"] = time.split(".")[0]
        return general

    def _map_signal_md(self, original_metadata):
        signal = {}

        if importlib.util.find_spec("lumispy") is None:
            _logger.warning(
                "Cannot find package lumispy, using BaseSignal as signal_type."
            )
            signal["signal_type"] = ""
        else:
            signal["signal_type"] = "Luminescence"  # pragma: no cover

        try:
            quantity = original_metadata["Document"]["Label"]
            quantity_unit = original_metadata["Document"]["DataLabel"]
        except KeyError:  # pragma: no cover
            pass  # pragma: no cover
        else:
            signal["quantity"] = f"{quantity} ({quantity_unit})"
        return signal

    def _map_detector_md(self, original_metadata):
        detector = {"processing": {}}
        detector_original = original_metadata["Document"]["InfoSerialized"]["Detector"]
        try:
            experiment_original = original_metadata["Document"]["InfoSerialized"][
                "Experiment"
            ]
        except KeyError:
            pass
        else:
            if "Overlap (%)" in experiment_original:
                detector["glued_spectrum"] = True
                detector["glued_spectrum_overlap"] = float(
                    experiment_original.get("Overlap (%)")
                )
                detector["glued_spectrum_windows"] = self._num_datasets
            else:
                detector["glued_spectrum"] = False
        detector["temperature"] = _convert_float(
            detector_original.get("Detector_Temperature")
        )
        detector["exposure_per_frame"] = (
            _convert_float(detector_original.get("Exposure_Time_(ms)")) / 1000
        )
        detector["frames"] = _convert_float(
            detector_original.get("No_of_Accumulations")
        )
        detector["processing"]["calc_average"] = detector_original.get("Calc_Average")

        try:
            detector["exposure_per_frame"] = (
                _convert_float(detector_original.get("Exposure_Time_(ms)")) / 1000
            )
        except TypeError:  # pragma: no cover
            detector["exposure_per_frame"] = None  # pragma: no cover

        if detector["processing"]["calc_average"] == "False":
            try:
                detector["integration_time"] = (
                    detector["exposure_per_frame"] * detector["frames"]
                )
            except TypeError:  # pragma: no cover
                pass  # pragma: no cover
        elif detector["processing"]["calc_average"] == "True":
            detector["integration_time"] = detector["exposure_per_frame"]

        return detector

    @staticmethod
    def _map_laser_md(original_metadata, laser_wavelength):
        laser = {}
        laser["objective_magnification"] = float(
            original_metadata["Hardware"]["Microscopes"]["Microscope"]["Objectives"][
                "Objective"
            ]["Magnification"]
        )
        if laser_wavelength is not None:
            laser["wavelength"] = laser_wavelength
        return laser

    @staticmethod
    def _map_spectrometer_md(original_metadata, central_wavelength):
        all_spectrometers_dict = {}

        spectrometers_original = original_metadata["Document"]["InfoSerialized"][
            "Spectrometers"
        ]

        for key, entry in spectrometers_original.items():
            spectro_dict_tmp = {"Grating": {}}
            spectro_dict_tmp["central_wavelength"] = central_wavelength
            blaze = original_metadata["Hardware"]["Spectrometers"][key]["Gratings"][
                "Grating"
            ]["Blaze"]
            if blaze[-2:] == "NM":
                blaze = float(blaze.split("N")[0])
            spectro_dict_tmp["Grating"]["blazing_wavelength"] = blaze
            spectro_dict_tmp["model"] = entry.get("Model")
            try:
                groove_density = entry["Groove_Density"]
            except KeyError:  # pragma: no cover
                groove_density = None  # pragma: no cover
            else:
                groove_density = float(groove_density.split(" ")[0])
            spectro_dict_tmp["Grating"]["groove_density"] = groove_density
            slit_entrance_front = (
                _convert_float(entry.get("Slit_Entrance-Front")) / 1000
            )
            slit_entrance_side = _convert_float(entry.get("Slit_Entrance-Side")) / 1000
            slit_exit_front = _convert_float(entry.get("Slit_Exit-Front")) / 1000
            slit_exit_side = _convert_float(entry.get("Slit_Exit-Side")) / 1000
            ## using the maximum here, because
            ## only one entrance/exit should be in use anyways
            spectro_dict_tmp["entrance_slit_width"] = max(
                slit_entrance_front, slit_entrance_side
            )
            spectro_dict_tmp["exit_slit_width"] = max(slit_exit_front, slit_exit_side)
            all_spectrometers_dict[key] = spectro_dict_tmp

        return all_spectrometers_dict

    @staticmethod
    def _get_calibration_md(original_metadata):
        try:
            calibration_original = original_metadata["Document"]["InfoSerialized"][
                "Calibration"
            ]
        except KeyError:
            central_wavelength = None
            laser_wavelength = None
        else:
            central_wavelength = _convert_float(
                calibration_original.get("Center_Wavelength")
            )
            laser_wavelength = _convert_float(
                calibration_original.get("Laser_Wavelength")
            )
            if laser_wavelength is not None:
                if np.isclose(laser_wavelength, 0):
                    laser_wavelength = None
        return central_wavelength, laser_wavelength

    def map_metadata(self, original_metadata):
        """Maps original_metadata to metadata."""
        general = self._map_general_md(original_metadata)
        signal = self._map_signal_md(original_metadata)
        detector = self._map_detector_md(original_metadata)
        central_wavelength, laser_wavelength = self._get_calibration_md(
            original_metadata
        )
        laser = self._map_laser_md(original_metadata, laser_wavelength)
        spectrometer = self._map_spectrometer_md(original_metadata, central_wavelength)

        acquisition_instrument = {
            "Detector": detector,
            "Laser": laser,
        }
        acquisition_instrument.update(spectrometer)

        metadata = {
            "Acquisition_instrument": acquisition_instrument,
            "General": general,
            "Signal": signal,
        }
        _remove_none_from_dict(metadata)
        return metadata

    def _get_signal_axis(self, axis_pos):
        """Helper method to read and set signal axis."""
        axis_list = axis_pos.findall("xDim")
        _error_handling_find_location(
            len(axis_list), "signal axis information"
        )  # pragma: no cover
        axis = axis_list[0]
        signal_data = axis[0].attrib["ValueArray"].split("|")
        if len(signal_data) != (int(signal_data[0]) + 1):
            _logger.critical(
                "Signal data size does not match expected size."
            )  # pragma: no cover
        signal_data = np.array([float(x) for x in signal_data[1:]])
        signal_dict = {}
        signal_dict["name"] = "Wavelength"
        unit = axis[0].attrib["Unit"]
        if unit == "Nanometer":
            signal_dict["units"] = "nm"
        else:
            signal_dict["units"] = unit  # pragma: no cover
        signal_dict["navigate"] = False
        if signal_data.size > 1:
            if self._use_uniform_signal_axis:
                offset, scale = polyfit(np.arange(signal_data.size), signal_data, deg=1)
                signal_dict["offset"] = offset
                signal_dict["scale"] = scale
                signal_dict["size"] = signal_data.size
                scale_compare = 100 * np.max(
                    np.abs(np.diff(signal_data) - scale) / scale
                )
                if scale_compare > 1:
                    _logger.warning(
                        f"The relative variation of the signal-axis-scale ({scale_compare:.2f}%) exceeds 1%.\n"
                        "                            "
                        "Using a non-uniform-axis is recommended."
                    )
            else:
                signal_dict["axis"] = signal_data
        else:  # pragma: no cover
            if self._use_uniform_signal_axis:  # pragma: no cover
                _logger.warning(  # pragma: no cover
                    "Signal only contains one entry.\n"  # pragma: no cover
                    "                            "  # pragma: no cover
                    "Using non-uniform-axis independent of use_uniform_signal_axis setting"  # pragma: no cover
                )  # pragma: no cover
            signal_dict["axis"] = signal_data  # pragma: no cover
        return signal_dict

    @staticmethod
    def _get_time_axis(time, axes_dict):
        scale = time[1]
        size = time.size
        ## inconsistency between timestamps and metadata
        ## (Document/InfoSerialized/Experiment6)
        ## in timeseries example file:
        ## exposure time: 1 sec
        ## delay: 3 sec
        ## accumulations: 2
        ## frames: 10
        ## total time: 56 sec
        ## timestamp scale: 4 sec
        ## -> max timestamp: 36 sec < 56 sec
        ## Here the timestamp is used for scale

        axes_dict["time"] = {
            "name": "time",
            "units": "s",
            "size": size,
            "offset": 0,
            "scale": scale,
            "navigate": False,
        }
        axes_dict["time"]["index_in_array"] = len(axes_dict) - 1

    @staticmethod
    def _get_nav_axis(name, axis):
        """Helper method to read and set navigation axes."""
        nav_dict = {}
        nav_dict["offset"] = float(axis["From"])
        nav_dict["scale"] = float(axis["Step"])
        nav_dict["size"] = int(axis["Points"])
        nav_dict["navigate"] = True
        nav_dict["name"] = name
        nav_dict["units"] = "µm"
        return nav_dict

    def set_axes(self, axis_head, signal_axis, time):
        """Extracts signal and navigation axes."""
        axes = dict()
        has_y = False
        has_x = False
        num_xy_frames = 0
        if "Y-Axis" in axis_head.keys():
            axes["Y"] = self._get_nav_axis("Y", axis_head["Y-Axis"])
            num_xy_frames += axes["Y"]["size"]
            axes["Y"]["index_in_array"] = 0
            has_y = True
        if "X-Axis" in axis_head.keys():
            axes["X"] = self._get_nav_axis("X", axis_head["X-Axis"])
            has_x = True
            if has_y:
                num_xy_frames *= axes["X"]["size"]
                axes["X"]["index_in_array"] = 1
            else:
                num_xy_frames += axes["X"]["size"]
                axes["X"]["index_in_array"] = 0

        ## adding time-axis entry if appropriate
        ## this is done inplace (the argument "axes" itself is altered)
        total_frames = int(axis_head["Detector"]["No_of_Frames"])
        if (total_frames - num_xy_frames) == 0 or total_frames == 1:
            has_time = False
        else:
            has_time = True
            self._get_time_axis(time, axes)
        if (has_x or has_y) and has_time:
            raise NotImplementedError(  # pragma: no cover
                "Reading a combination of timeseries and map or linescan is not implemented."
            )

        if self._glued_data_as_stack and self._num_datasets != 0:
            if has_time or has_x or has_y:
                _logger.warning(  # pragma: no cover
                    "Loading glued data as stack in combination with multiple axis (time, linescan or map)"
                    "                            "
                    "is not tested and may lead to false results."
                    "                            "
                    "Please use glued_data_as_stack=False for loading the file."
                )

            axes_list = []
            for signal_axis in signal_axis:
                axes_tmp = deepcopy(axes)
                axes_tmp["signal_dict"] = signal_axis
                axes_tmp["signal_dict"]["index_in_array"] = len(axes) - 1
                axes_tmp = sorted(
                    axes_tmp.values(), key=lambda item: item["index_in_array"]
                )
                axes_list.append(axes_tmp)
        else:
            axes["signal_dict"] = signal_axis[0]
            axes["signal_dict"]["index_in_array"] = len(axes) - 1
            ## extra surrounding list here to ensure compatibility
            ## with glued_data_as_stack for file_reader()
            axes_list = [sorted(axes.values(), key=lambda item: item["index_in_array"])]

        return axes_list

    @staticmethod
    def _parse_data(data_pos):
        """Extracts data from file."""
        data_list = data_pos.findall("Data")
        _error_handling_find_location(len(data_list), "data")  # pragma: no cover

        ## dtype=np.int64 instead of int here,
        ## because on windows python int defaults to 32bit
        ## the timestamp is given as windows filetime
        ## -> number is too large for 32bit
        data_array = []
        time_array = []
        for frame in data_list[0]:
            time_frame = np.fromstring(
                frame.attrib["TimeStamp"], sep=" ", dtype=np.int64
            )
            data_frame = [float(x) for x in frame.text.split(";")]
            time_array.append(time_frame)
            data_array.append(data_frame)
        data = np.array(data_array).ravel()
        time = (np.array(time_array, dtype=np.int64) - time_array[0]).ravel() / 1e7
        return data, time

    def _load_glued_data_stack(self, data_head):
        num_datasets_list = data_head.findall("Childs")
        _error_handling_find_location(
            len(num_datasets_list), "glued datasets"
        )  # pragma: no cover
        data_array = []
        signal_axis_list = []
        time_array = []
        for dataset in num_datasets_list[0]:
            signal_axis = self._get_signal_axis(dataset)
            signal_axis_list.append(signal_axis)
            data, time = self._parse_data(dataset)
            data_array.append(data)
            time_array.append(time)
        data = np.array(data_array)
        time = np.array(time_array)
        return data, time, signal_axis_list

    def get_data_and_signal(self, data_head):
        if self._glued_data_as_stack and self._num_datasets != 0:
            data, time, signal_axis = self._load_glued_data_stack(data_head)
        else:
            data, time = self._parse_data(data_head)
            signal_axis = [self._get_signal_axis(data_head)]
            data = [data]
            ## extra surrounding list here
            ## to ensure compatibility with glued_data_as_stack=True
            ## for file_reader(), reshape_data()
        return data, time, signal_axis

    def reshape_data(self, data, axes):
        """Reshapes data according to axes sizes."""
        if self._use_uniform_signal_axis:
            wavelength_size = axes[0][-1]["size"]
        else:
            wavelength_size = axes[0][-1]["axis"].size
        shape_sizes = []
        for i in range(len(axes[0]) - 1):
            shape_sizes.append(axes[0][i]["size"])
        shape_sizes.append(wavelength_size)

        for i, dataset in enumerate(data):
            dataset_reshaped = np.reshape(dataset, shape_sizes)
            data[i] = dataset_reshaped
        return data


def file_reader(
    filename,
    lazy=False,
    use_uniform_signal_axis=False,
    glued_data_as_stack=False,
    filter_original_metadata=True,
):
    """
    Read TriVista's ``.tvf`` file.

    Parameters
    ----------
    %s
    %s
    use_uniform_signal_axis : bool, default=False
        Can be specified to choose between non-uniform or uniform signal axes.
        If `True`, the ``scale`` attribute is calculated from the average delta
        along the signal axis and a warning is raised in case the delta varies
        by more than 1%%.
    glued_data_as_stack : bool, default=False
        Using the mode `Step & Glue` results in measurements performed
        at different wavelength ranges with some overlap between them.
        The file then contains the individual spectra as well as
        the "glued" spectrum. The latter is represented as one spectrum,
        which covers the complete wavelength range. Stitching the datasets
        together in the overlap region is already done by the setup.
        If this setting is set to `True`, then the individual datasets will be loaded
        as a stack. Otherwise, only the "glued" spectrum is loaded.
    filter_original_metadata : bool, default=True
        Decides whether to process the original_metadata.
        If `True`, then non-relevant metadata will be excluded.
        For example, the metadata usually contains information
        for multiple objectives, even though only one is used.
        In this case, only the metadata from the used objective
        will be added to original_metadata.
        This setting only affects the ``original_metadata`` attribute
        and not the ``metadata`` attribute.

    %s
    """
    if lazy is not False:
        raise NotImplementedError("Lazy loading is not supported.")

    t = TrivistaTVFReader(
        Path(filename),
        use_uniform_signal_axis=use_uniform_signal_axis,
        glued_data_as_stack=glued_data_as_stack,
        filter_original_metadata=filter_original_metadata,
    )

    result = []
    for dataset, axes in zip(t.data, t.axes):
        result.append(
            {
                "data": dataset,
                "axes": axes,
                "metadata": deepcopy(t.metadata),
                "original_metadata": deepcopy(t.original_metadata),
            }
        )
    return result


file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)