1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import os
import dask.array as da
import numpy as np
def get_chunk_slice(
shape,
chunks="auto",
block_size_limit=None,
dtype=None,
):
"""
Get chunk slices for the :func:`rsciio.utils.distributed.slice_memmap` function.
Takes a shape and chunks and returns a dask array of the slices to be used with the
:func:`rsciio.utils.distributed.slice_memmap` function. This is useful for loading data from a memmaped file in a
distributed manner.
Parameters
----------
shape : tuple
Shape of the data.
chunks : tuple, optional
Chunk shape. The default is "auto".
block_size_limit : int, optional
Maximum size of a block in bytes. The default is None. This is passed
to the :py:func:`dask.array.core.normalize_chunks` function when chunks == "auto".
dtype : numpy.dtype, optional
Data type. The default is None. This is passed to the
:py:func:`dask.array.core.normalize_chunks` function when chunks == "auto".
Returns
-------
dask.array.Array
Dask array of the slices.
tuple
Tuple of the chunks.
"""
chunks = da.core.normalize_chunks(
chunks=chunks, shape=shape, limit=block_size_limit, dtype=dtype
)
chunks_shape = tuple([len(c) for c in chunks])
slices = np.empty(
shape=chunks_shape + (len(chunks_shape), 2),
dtype=int,
)
for ind in np.ndindex(chunks_shape):
current_chunk = [chunk[i] for i, chunk in zip(ind, chunks)]
starts = [int(np.sum(chunk[:i])) for i, chunk in zip(ind, chunks)]
stops = [s + c for s, c in zip(starts, current_chunk)]
slices[ind] = [[start, stop] for start, stop in zip(starts, stops)]
return da.from_array(slices, chunks=(1,) * len(shape) + slices.shape[-2:]), chunks
def slice_memmap(slices, file, dtypes, shape, key=None, **kwargs):
"""
Slice a memory mapped file using a tuple of slices.
This is useful for loading data from a memory mapped file in a distributed manner. The function
first creates a memory mapped array of the entire dataset and then uses the ``slices`` to slice the
memory mapped array. The slices can be used to build a ``dask`` array as each slice translates to one
chunk for the ``dask`` array.
Parameters
----------
slices : array-like of int
An array of the slices to use. The dimensions of the array should be
(n,2) where n is the number of dimensions of the data. The first column
is the start of the slice and the second column is the stop of the slice.
file : str
Path to the file.
dtypes : numpy.dtype
Data type of the data for :class:`numpy.memmap` function.
shape : tuple
Shape of the entire dataset. Passed to the :class:`numpy.memmap` function.
key : None, str
For structured dtype only. Specify the key of the structured dtype to use.
**kwargs : dict
Additional keyword arguments to pass to the :class:`numpy.memmap` function.
Returns
-------
numpy.ndarray
Array of the data from the memory mapped file sliced using the provided slice.
"""
slices_ = np.squeeze(slices)[()]
data = np.memmap(file, dtypes, shape=shape, **kwargs)
if key is not None:
data = data[key]
slices_ = tuple([slice(s[0], s[1]) for s in slices_])
return data[slices_]
def memmap_distributed(
filename,
dtype,
offset=0,
shape=None,
order="C",
chunks="auto",
block_size_limit=None,
key=None,
):
"""
Drop in replacement for py:func:`numpy.memmap` allowing for distributed
loading of data.
This always loads the data using dask which can be beneficial in many
cases, but may not be ideal in others. The ``chunks`` and ``block_size_limit``
are for describing an ideal chunk shape and size as defined using the
:func:`dask.array.core.normalize_chunks` function.
Parameters
----------
filename : str
Path to the file.
dtype : numpy.dtype
Data type of the data for memmap function.
offset : int, optional
Offset in bytes. The default is 0.
shape : tuple, optional
Shape of the data to be read. The default is None.
order : str, optional
Order of the data. The default is "C" see :class:`numpy.memmap` for more details.
chunks : tuple, optional
Chunk shape. The default is "auto".
block_size_limit : int, optional
Maximum size of a block in bytes. The default is None.
key : None, str
For structured dtype only. Specify the key of the structured dtype to use.
Returns
-------
dask.array.Array
Dask array of the data from the memmaped file and with the specified chunks.
Notes
-----
Currently :func:`dask.array.map_blocks` does not allow for multiple outputs.
As a result, in case of structured dtype, the key of the structured dtype need
to be specified.
For example: with dtype = (("data", int, (128, 128)), ("sec", "<u4", 512)),
"data" or "sec" will need to be specified.
"""
if dtype.names is not None:
# Structured dtype
array_dtype = dtype[key].base
sub_array_shape = dtype[key].shape
else:
array_dtype = dtype.base
sub_array_shape = dtype.shape
if shape is None:
unit_size = np.dtype(dtype).itemsize
shape = int(os.path.getsize(filename) / unit_size)
if not isinstance(shape, tuple):
shape = (shape,)
# Separates slices into appropriately sized chunks.
chunked_slices, data_chunks = get_chunk_slice(
shape=shape + sub_array_shape,
chunks=chunks,
block_size_limit=block_size_limit,
dtype=array_dtype,
)
num_dim = len(shape)
data = da.map_blocks(
slice_memmap,
chunked_slices,
file=filename,
dtype=array_dtype,
shape=shape,
order=order,
mode="r",
dtypes=dtype,
offset=offset,
chunks=data_chunks,
drop_axis=(
num_dim,
num_dim + 1,
), # Dask 2021.10.0 minimum to use negative indexing
key=key,
)
return data
|