File: skimage_exposure.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (130 lines) | stat: -rw-r--r-- 4,422 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""skimage's `rescale_intensity` that takes and returns dask arrays."""

import warnings

import numpy as np
import skimage
from packaging.version import Version
from skimage.exposure.exposure import _output_dtype, intensity_range


def rescale_intensity(image, in_range="image", out_range="dtype"):
    """Return image after stretching or shrinking its intensity levels.

    The desired intensity range of the input and output, `in_range` and
    `out_range` respectively, are used to stretch or shrink the intensity range
    of the input image. See examples below.

    Parameters
    ----------
    image : array
        Image array.
    in_range, out_range : str or 2-tuple, optional
        Min and max intensity values of input and output image.
        The possible values for this parameter are enumerated below.

        'image'
            Use image min/max as the intensity range.
        'dtype'
            Use min/max of the image's dtype as the intensity range.
        dtype-name
            Use intensity range based on desired `dtype`. Must be valid key
            in `DTYPE_RANGE`.
        2-tuple
            Use `range_values` as explicit min/max intensities.

    Returns
    -------
    out : array
        Image array after rescaling its intensity. This image is the same dtype
        as the input image.

    Notes
    -----
    .. versionchanged:: 0.17
        The dtype of the output array has changed to match the input dtype, or
        float if the output range is specified by a pair of floats.

    See Also
    --------
    equalize_hist

    Examples
    --------
    By default, the min/max intensities of the input image are stretched to
    the limits allowed by the image's dtype, since `in_range` defaults to
    'image' and `out_range` defaults to 'dtype':

    >>> image = np.array([51, 102, 153], dtype=np.uint8)
    >>> rescale_intensity(image)
    array([  0, 127, 255], dtype=uint8)

    It's easy to accidentally convert an image dtype from uint8 to float:

    >>> 1.0 * image
    array([ 51., 102., 153.])

    Use `rescale_intensity` to rescale to the proper range for float dtypes:

    >>> image_float = 1.0 * image
    >>> rescale_intensity(image_float)
    array([0. , 0.5, 1. ])

    To maintain the low contrast of the original, use the `in_range` parameter:

    >>> rescale_intensity(image_float, in_range=(0, 255))
    array([0.2, 0.4, 0.6])

    If the min/max value of `in_range` is more/less than the min/max image
    intensity, then the intensity levels are clipped:

    >>> rescale_intensity(image_float, in_range=(0, 102))
    array([0.5, 1. , 1. ])

    If you have an image with signed integers but want to rescale the image to
    just the positive range, use the `out_range` parameter. In that case, the
    output dtype will be float:

    >>> image = np.array([-10, 0, 10], dtype=np.int8)
    >>> rescale_intensity(image, out_range=(0, 127))
    array([  0. ,  63.5, 127. ])

    To get the desired range with a specific dtype, use ``.astype()``:

    >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8)
    array([  0,  63, 127], dtype=int8)

    If the input image is constant, the output will be clipped directly to the
    output range:
    >>> image = np.array([130, 130, 130], dtype=np.int32)
    >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32)
    array([127, 127, 127], dtype=int32)
    """
    args = ()
    if Version(skimage.__version__) >= Version("0.19.0"):
        args = (image.dtype,)
    if out_range in ["dtype", "image"]:
        out_dtype = _output_dtype(image.dtype.type, *args)
    else:
        out_dtype = _output_dtype(out_range, *args)

    imin, imax = map(float, intensity_range(image, in_range))
    omin, omax = map(
        float, intensity_range(image, out_range, clip_negative=(imin >= 0))
    )

    if np.any(np.isnan([imin, imax, omin, omax])):
        warnings.warn(
            "One or more intensity levels are NaN. Rescaling will broadcast "
            "NaN to the full image. Provide intensity levels yourself to "
            "avoid this. E.g. with np.nanmin(image), np.nanmax(image).",
            stacklevel=2,
        )

    image = np.clip(image, imin, imax)

    if imin != imax:
        image = (image - imin) / (imax - imin)
        return (image * (omax - omin) + omin).astype(dtype=out_dtype)
    else:
        return np.clip(image, omin, omax).astype(out_dtype)