File: _api.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (291 lines) | stat: -rw-r--r-- 9,666 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

import logging
from collections.abc import MutableMapping

import dask.array as da
import numcodecs
import numpy as np
import zarr
from dask.diagnostics import ProgressBar

from rsciio._docstrings import (
    CHUNKS_DOC,
    FILENAME_DOC,
    LAZY_DOC,
    RETURNS_DOC,
    SHOW_PROGRESSBAR_DOC,
    SIGNAL_DOC,
)
from rsciio._hierarchical import HierarchicalReader, HierarchicalWriter, version
from rsciio.utils.tools import dummy_context_manager

_logger = logging.getLogger(__name__)


# -----------------------
# File format description
# -----------------------
# The root must contain a group called Experiments
# The experiments group can contain any number of subgroups
# Each subgroup is an experiment or signal
# Each subgroup must contain at least one dataset called data
# The data is an array of arbitrary dimension
# In addition a number equal to the number of dimensions of the data
# dataset + 1 of empty groups called coordinates followed by a number
# must exists with the following attributes:
#    'name'
#    'offset'
#    'scale'
#    'units'
#    'size'
#    'index_in_array'
# The experiment group contains a number of attributes that will be
# directly assigned as class attributes of the Signal instance. In
# addition the experiment groups may contain 'original_metadata' and
# 'metadata'subgroup that will be
# assigned to the same name attributes of the Signal instance as a
# Dictionary Browsers
# The Experiments group can contain attributes that may be common to all
# the experiments and that will be accessible as attributes of the
# Experiments instance


class ZspyReader(HierarchicalReader):
    _file_type = "zspy"

    def __init__(self, file):
        super().__init__(file)
        self.Dataset = zarr.Array
        self.Group = zarr.Group


class ZspyWriter(HierarchicalWriter):
    target_size = 1e8
    _file_type = "zspy"
    _unicode_kwds = dict(dtype=str)

    def __init__(self, file, signal, expg, **kwargs):
        super().__init__(file, signal, expg, **kwargs)
        self.Dataset = zarr.Array

    @staticmethod
    def _get_object_dset(group, data, key, chunks, dtype=None, **kwds):
        """Creates a Zarr Array object for saving ragged data

        Forces the number of chunks span the array if not a dask array as
        calculating the chunks for a ragged array is not supported. See
        https://github.com/hyperspy/rosettasciio/issues/168 for more details.
        """
        if not isinstance(data, da.Array):
            chunks = data.shape
        these_kwds = kwds.copy()
        these_kwds.update(dict(dtype=object, exact=True, chunks=chunks))

        if dtype is None:
            test_data = data[data.ndim * (0,)]
            if isinstance(test_data, da.Array):
                test_data = test_data.compute()
            if hasattr(test_data, "dtype"):
                # this is a numpy array
                dtype = test_data.dtype
            else:
                dtype = type(test_data)

        # For python type, JSON / MsgPack codecs, otherwise
        # use VLenArray with specific numpy dtype
        if (
            np.issubdtype(dtype, str)
            or np.issubdtype(dtype, list)
            or np.issubdtype(dtype, tuple)
        ):
            object_codec = numcodecs.MsgPack()
        else:
            object_codec = numcodecs.VLenArray(dtype)

        dset = group.require_dataset(
            key,
            data.shape,
            object_codec=object_codec,
            **these_kwds,
        )
        return dset

    @staticmethod
    def _store_data(data, dset, group, key, chunks, show_progressbar=True):
        # Tuple of dask arrays can also be passed, in which case the task graphs
        # are merged and the data is written in a single `da.store` call.
        # This is useful when saving a ragged array, where we need to write
        # the data and the shape at the same time as the ragged array must have
        # only one dimension.
        if isinstance(data, tuple):
            data = list(data)
        elif not isinstance(data, list):
            data = [
                data,
            ]
            dset = [
                dset,
            ]
        for i, (data_, dset_) in enumerate(zip(data, dset)):
            if isinstance(data_, da.Array):
                if data_.chunks != dset_.chunks:
                    data[i] = data_.rechunk(dset_.chunks)
                # for performance reason, we write the data later, with all data
                # at the same time in a single `da.store` call
            else:
                dset_[:] = data_
        if isinstance(data[0], da.Array):
            cm = ProgressBar if show_progressbar else dummy_context_manager
            with cm():
                # lock=False is necessary with the distributed scheduler
                # da.store of tuple helps to merge task graphs and avoid computing twice
                da.store(data, dset, lock=False)


def file_writer(
    filename,
    signal,
    chunks=None,
    compressor=None,
    close_file=True,
    write_dataset=True,
    show_progressbar=True,
    **kwds,
):
    """
    Write data to HyperSpy's zarr format.

    Parameters
    ----------
    %s
    %s
    %s
    compressor : numcodecs.abc.Codec or None, default=None
        A compressor can be passed to the save function to compress the data
        efficiently, see `Numcodecs codec <https://numcodecs.readthedocs.io/en/stable>`_.
        If None, use a Blosc compressor.
    close_file : bool, default=True
        Close the file after writing. Only relevant for some zarr storages
        (:py:class:`zarr.storage.ZipStore`, :py:class:`zarr.storage.DBMStore`)
        requiring store to flush data to disk. If ``False``, doesn't close the
        file after writing. The file should not be closed if the data needs to be
        accessed lazily after saving.
    write_dataset : bool, default=True
        If ``False``, doesn't write the dataset when writing the file. This can
        be useful to overwrite signal attributes only (for example ``axes_manager``)
        without having to write the whole dataset, which can take time.
    %s
    **kwds
        The keyword arguments are passed to the
        :py:meth:`zarr.hierarchy.Group.require_dataset` function.

    Examples
    --------
    >>> from numcodecs import Blosc
    >>> compressor = Blosc(cname='zstd', clevel=1, shuffle=Blosc.SHUFFLE) # Used by default
    >>> file_writer('test.zspy', s, compressor = compressor) # will save with Blosc compression
    """
    if compressor is None:
        compressor = numcodecs.Blosc(
            cname="zstd", clevel=1, shuffle=numcodecs.Blosc.SHUFFLE
        )
    if not isinstance(write_dataset, bool):
        raise ValueError("`write_dataset` argument must a boolean.")

    if isinstance(filename, MutableMapping):
        store = filename
    else:
        store = zarr.storage.NestedDirectoryStore(
            filename,
        )
    mode = "w" if write_dataset else "a"

    _logger.debug(f"File mode: {mode}")
    _logger.debug(f"Zarr store: {store}")

    f = zarr.open_group(store=store, mode=mode)
    f.attrs["file_format"] = "ZSpy"
    f.attrs["file_format_version"] = version
    exps = f.require_group("Experiments")
    title = signal["metadata"]["General"]["title"]
    group_name = title if title else "__unnamed__"
    # / is a invalid character, see https://github.com/hyperspy/hyperspy/issues/942
    if "/" in group_name:
        group_name = group_name.replace("/", "-")
    expg = exps.require_group(group_name)

    writer = ZspyWriter(
        f,
        signal,
        expg,
        chunks=chunks,
        compressor=compressor,
        write_dataset=write_dataset,
        show_progressbar=show_progressbar,
        **kwds,
    )
    writer.write()

    if isinstance(store, (zarr.ZipStore, zarr.DBMStore, zarr.LMDBStore)):
        if close_file:
            store.close()
        else:
            store.flush()


file_writer.__doc__ %= (
    FILENAME_DOC.replace("read", "write to"),
    SIGNAL_DOC,
    CHUNKS_DOC,
    SHOW_PROGRESSBAR_DOC,
)


def file_reader(filename, lazy=False, **kwds):
    """
    Read data from zspy files saved with the HyperSpy zarr format
    specification.

    Parameters
    ----------
    %s
    %s
    **kwds : dict, optional
        Pass keyword arguments to the :py:func:`zarr.convenience.open` function.

    %s
    """
    mode = kwds.pop("mode", "r")
    try:
        f = zarr.open(filename, mode=mode, **kwds)
    except Exception:
        _logger.error(
            "The file can't be read. It may be possible that the zspy file is "
            "saved with a different store than a zarr directory store. Try "
            "passing a different zarr store instead of the file name."
        )
        raise

    reader = ZspyReader(f)

    return reader.read(lazy=lazy)


file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)