1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import datetime
import logging
import os
import warnings
import dask
import dateutil
import numpy as np
from dask.diagnostics import ProgressBar
from skimage import dtype_limits
from rsciio._docstrings import (
ENDIANESS_DOC,
FILENAME_DOC,
LAZY_DOC,
MMAP_DOC,
RETURNS_DOC,
SHOW_PROGRESSBAR_DOC,
SIGNAL_DOC,
)
from rsciio.utils.date_time_tools import (
datetime_to_serial_date,
serial_date_to_ISO_format,
)
from rsciio.utils.skimage_exposure import rescale_intensity
from rsciio.utils.tools import (
DTBox,
convert_units,
dict2sarray,
dummy_context_manager,
sarray2dict,
)
_logger = logging.getLogger(__name__)
magics = [0x0102]
mapping = {
"blockfile_header.Beam_energy": (
"Acquisition_instrument.TEM.beam_energy",
lambda x: x * 1e-3,
),
"blockfile_header.Camera_length": (
"Acquisition_instrument.TEM.camera_length",
lambda x: x * 1e-4,
),
"blockfile_header.Scan_rotation": (
"Acquisition_instrument.TEM.rotation",
lambda x: x * 1e-2,
),
}
def get_header_dtype_list(endianess="<"):
end = endianess
dtype_list = (
[
("ID", (bytes, 6)),
("MAGIC", end + "u2"),
("Data_offset_1", end + "u4"), # Offset VBF
("Data_offset_2", end + "u4"), # Offset DPs
("UNKNOWN1", end + "u4"), # Flags for ASTAR software?
("DP_SZ", end + "u2"), # Pixel dim DPs
("DP_rotation", end + "u2"), # [degrees ( * 100 ?)]
("NX", end + "u2"), # Scan dim 1
("NY", end + "u2"), # Scan dim 2
("Scan_rotation", end + "u2"), # [100 * degrees]
("SX", end + "f8"), # Pixel size [nm]
("SY", end + "f8"), # Pixel size [nm]
("Beam_energy", end + "u4"), # [V]
("SDP", end + "u2"), # Pixel size [100 * ppcm]
("Camera_length", end + "u4"), # [10 * mm]
("Acquisition_time", end + "f8"), # [Serial date]
]
+ [("Centering_N%d" % i, "f8") for i in range(8)]
+ [("Distortion_N%02d" % i, "f8") for i in range(14)]
)
return dtype_list
def get_default_header(endianess="<"):
"""Returns a header pre-populated with default values."""
dt = np.dtype(get_header_dtype_list())
header = np.zeros((1,), dtype=dt)
header["ID"][0] = "IMGBLO".encode()
header["MAGIC"][0] = magics[0]
header["Data_offset_1"][0] = 0x1000 # Always this value observed
header["UNKNOWN1"][0] = 131141 # Very typical value (always?)
header["Acquisition_time"][0] = datetime_to_serial_date(
datetime.datetime.fromtimestamp(86400, dateutil.tz.tzutc())
)
# Default to UNIX epoch + 1 day
# Have to add 1 day, as dateutil's timezones dont work before epoch
return header
def get_header_from_signal(signal, endianess="<"):
header = get_default_header(endianess)
if "blockfile_header" in signal["original_metadata"]:
header = dict2sarray(
signal["original_metadata"]["blockfile_header"], sarray=header
)
note = signal["original_metadata"]["blockfile_header"]["Note"]
else:
note = ""
# The navigation and signal units are 'nm' and 'cm', respectively, so we
# convert the units accordingly before saving the signal
axes = signal["axes"]
sig_axes = [axis for axis in axes if not axis["navigate"]]
nav_axes = [axis for axis in axes if axis["navigate"]]
for axis in sig_axes:
if axis["units"]:
try:
axis["scale"] = convert_units(axis["scale"], axis["units"], "cm")
axis["offset"] = convert_units(axis["offset"], axis["units"], "cm")
except Exception:
warnings.warn(
"BLO file expects cm units in signal dimensions. "
f"Existing units, {axis['units']} could not be converted; saving "
"axes scales as is. Beware that scales "
"will likely be incorrect in the file.",
UserWarning,
)
else:
warnings.warn(
"BLO file expects cm units in signal dimensions. "
f"The {axis['name']} does not have units; saving "
"axes scales as is. Beware that scales "
"will likely be incorrect in the file.",
UserWarning,
)
for axis in nav_axes:
if axis["units"]:
try:
axis["scale"] = convert_units(axis["scale"], axis["units"], "nm")
axis["offset"] = convert_units(axis["offset"], axis["units"], "nm")
except Exception:
warnings.warn(
"BLO file expects nm units in navigation dimensions. "
f"Existing units, {axis['units']} could not be converted; saving "
"axes scales as is. Beware that scales "
"will likely be incorrect in the file.",
UserWarning,
)
else:
warnings.warn(
"BLO file expects nm units in navigation dimensions. "
f"The {axis['name']} does not have units; saving "
"axes scales as is. Beware that scales "
"will likely be incorrect in the file.",
UserWarning,
)
if len(nav_axes) == 2:
NX = nav_axes[1]["size"]
NY = nav_axes[0]["size"]
SX = nav_axes[1]["scale"]
SY = nav_axes[0]["scale"]
elif len(nav_axes) == 1:
NX = nav_axes[0]["size"]
NY = 1
SX = nav_axes[0]["scale"]
SY = SX
elif len(nav_axes) == 0:
NX = NY = SX = SY = 1
else:
raise ValueError(
"Number of navigation axes has to be 0, 1 or 2"
) # pragma: no cover
DP_SZ = [axis["size"] for axis in sig_axes][::-1]
if DP_SZ[0] != DP_SZ[1]:
raise ValueError("Blockfiles require signal shape to be square!")
DP_SZ = DP_SZ[0]
SDP = 100.0 / sig_axes[1]["scale"]
offset2 = NX * NY + header["Data_offset_1"][0]
# Based on inspected files, the DPs are stored at 16-bit boundary...
# Normally, you'd expect word alignment (32-bits) ¯\_(°_o)_/¯
offset2 += offset2 % 16
header = dict2sarray(
{
"NX": NX,
"NY": NY,
"DP_SZ": DP_SZ,
"SX": SX,
"SY": SY,
"SDP": SDP,
"Data_offset_2": offset2,
},
sarray=header,
)
return header, note
def file_reader(filename, lazy=False, mmap_mode=None, endianess="<"):
"""
Read a blockfile.
Parameters
----------
%s
%s
%s
%s
%s
"""
_logger.debug("Reading blockfile: %s" % filename)
metadata = {}
if mmap_mode is None:
mmap_mode = "r" if lazy else "c"
# Makes sure we open in right mode:
if "+" in mmap_mode or ("write" in mmap_mode and "copyonwrite" != mmap_mode):
if lazy:
raise ValueError("Lazy loading does not support in-place writing")
f = open(filename, "r+b")
else:
f = open(filename, "rb")
_logger.debug("File opened")
# Get header
header = np.fromfile(f, dtype=get_header_dtype_list(endianess), count=1)
if header["MAGIC"][0] not in magics:
warnings.warn(
"Blockfile has unrecognized header signature. "
"Will attempt to read, but correcteness not guaranteed!",
UserWarning,
)
header = sarray2dict(header)
note = f.read(header["Data_offset_1"] - f.tell())
# It seems it uses "\x00" for padding, so we remove it
try:
header["Note"] = note.decode("latin1").strip("\x00")
except Exception:
# Not sure about the encoding so, if it fails, we carry on
_logger.warning(
"Reading the Note metadata of this file failed. "
"You can help improving "
"HyperSpy by reporting the issue in "
"https://github.com/hyperspy/hyperspy"
)
_logger.debug("File header: " + str(header))
NX, NY = int(header["NX"]), int(header["NY"])
DP_SZ = int(header["DP_SZ"])
if header["SDP"]:
SDP = 100.0 / header["SDP"]
else:
SDP = 1 # Set default scale to 1
original_metadata = {"blockfile_header": header}
# Get data:
# TODO A Virtual BF/DF is stored first, may be loaded as navigator in future
# offset1 = header['Data_offset_1']
# f.seek(offset1)
# navigator = np.fromfile(f, dtype=endianess+"u1", shape=(NX, NY)).T
# Then comes actual blockfile
offset2 = header["Data_offset_2"]
if not lazy:
f.seek(offset2)
data = np.fromfile(f, dtype=endianess + "u1")
else:
data = np.memmap(f, mode=mmap_mode, offset=offset2, dtype=endianess + "u1")
try:
data = data.reshape((NY, NX, DP_SZ * DP_SZ + 6))
except ValueError:
warnings.warn(
"Blockfile header dimensions larger than file size! "
"Will attempt to load by zero padding incomplete frames."
)
# Data is stored DP by DP:
pw = [(0, NX * NY * (DP_SZ * DP_SZ + 6) - data.size)]
data = np.pad(data, pw, mode="constant")
data = data.reshape((NY, NX, DP_SZ * DP_SZ + 6))
# Every frame is preceeded by a 6 byte sequence (AA 55, and then a 4 byte
# integer specifying frame number)
data = data[:, :, 6:]
data = data.reshape((NY, NX, DP_SZ, DP_SZ), order="C").squeeze()
units = ["nm", "nm", "cm", "cm"]
names = ["y", "x", "dy", "dx"]
navigate = [True, True, False, False]
scales = [header["SY"], header["SX"], SDP, SDP]
date, time, time_zone = serial_date_to_ISO_format(header["Acquisition_time"])
metadata = {
"General": {
"original_filename": os.path.split(filename)[1],
"date": date,
"time": time,
"time_zone": time_zone,
"notes": header["Note"],
},
"Signal": {"signal_type": "diffraction"},
}
# Create the axis objects for each axis
dim = data.ndim
axes = [
{
"size": data.shape[i],
"index_in_array": i,
"name": names[i],
"scale": scales[i],
"offset": 0.0,
"units": units[i],
"navigate": navigate[i],
}
for i in range(dim)
]
dictionary = {
"data": data,
"axes": axes,
"metadata": metadata,
"original_metadata": original_metadata,
"mapping": mapping,
}
f.close()
return [
dictionary,
]
file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, MMAP_DOC, ENDIANESS_DOC, RETURNS_DOC)
def file_writer(
filename,
signal,
intensity_scaling=None,
navigator="navigator",
show_progressbar=True,
endianess="<",
):
"""
Write signal to blockfile.
Parameters
----------
%s
%s
intensity_scaling : str, 2-tuple of float, 2-tuple of int
If the signal datatype is not :py:class:`numpy.ubyte`, casting to this
datatype without intensity rescaling results in overflow errors (default behavior)
This argument provides intensity scaling strategies and the options are:
- ``'dtype'``: the limits of the datatype of the dataset, e.g. 0-65535 for
:py:class:`numpy.ushort`, are mapped onto 0-255, respectively. Does not work
for ``float`` data types.
- ``'minmax'``: the minimum and maximum in the dataset are mapped to 0-255.
- ``'crop'``: everything below 0 and above 255 is set to 0 and 255, respectively
- 2-tuple of `floats` or `ints`: the intensities between these values are
scaled between 0-255, everything below is 0 and everything above is 255.
navigator : str or array-like
A ``.blo`` file also saves a virtual bright field image for navigation.
This option determines what kind of data is stored for this image.
By default this is set to ``'navigator'``, which results in using the
:py:attr:`hyperspy.api.signals.BaseSignal.navigator` attribute if used with HyperSpy.
Otherwise, it is calculated during saving which can take some time for large
datasets. Alternatively, an array-like of the right shape may also be provided.
If set to None, a zero array is stored in the file.
%s
%s
"""
smetadata = DTBox(signal["metadata"], box_dots=True)
if intensity_scaling is None:
# to distinguish from the tuple case
if signal["data"].dtype != "u1":
warnings.warn(
"Data does not have uint8 dtype: values outside the "
"range 0-255 may result in overflow. To avoid this "
"use the 'intensity_scaling' keyword argument.",
UserWarning,
)
elif intensity_scaling == "dtype":
original_scale = dtype_limits(signal["data"])
if original_scale[1] == 1.0:
raise ValueError("Signals with float dtype can not use 'dtype'")
elif intensity_scaling == "minmax":
minimum = signal["data"].min()
maximum = signal["data"].max()
if signal["attributes"]["_lazy"]:
minimum, maximum = dask.compute(minimum, maximum)
original_scale = (minimum, maximum)
elif intensity_scaling == "crop":
original_scale = (0, 255)
else:
# we leave the error checking for incorrect tuples to skimage
original_scale = intensity_scaling
header, note = get_header_from_signal(signal, endianess=endianess)
with open(filename, "wb") as f:
# Write header
header.tofile(f)
# Write header note field:
if len(note) > int(header["Data_offset_1"][0]) - f.tell():
note = note[: int(header["Data_offset_1"][0]) - f.tell() - len(note)]
f.write(note.encode())
# Zero pad until next data block
zero_pad = int(header["Data_offset_1"][0]) - f.tell()
np.zeros((zero_pad,), np.byte).tofile(f)
# Write virtual bright field
if navigator is None:
navigator = np.zeros((signal["data"].shape[0], signal["data"].shape[1]))
elif isinstance(navigator, str) and (navigator == "navigator"):
if smetadata.get("_HyperSpy._sig_navigator", False):
navigator = smetadata["_HyperSpy._sig_navigator.data"]
else:
navigator = signal["data"].mean(axis=(-2, -1))
elif hasattr(navigator, "shape"):
# Is numpy array-like
# check that the shape is ok
if navigator.shape != signal["data"].shape[:2]:
raise ValueError(
"Size of the provided `navigator` does not match the "
"navigation dimensions of the dataset."
)
else:
raise ValueError("The `navigator` argument is expected to be array-like")
if intensity_scaling is not None:
navigator = rescale_intensity(
navigator, in_range=original_scale, out_range=np.uint8
)
navigator = navigator.astype(endianess + "u1")
np.asanyarray(navigator).tofile(f)
# Zero pad until next data block
if f.tell() > int(header["Data_offset_2"][0]):
raise ValueError(
"Signal navigation size does not match " "data dimensions."
)
zero_pad = int(header["Data_offset_2"][0]) - f.tell()
np.zeros((zero_pad,), np.byte).tofile(f)
file_location = f.tell()
if intensity_scaling is not None:
array_data = rescale_intensity(
signal["data"],
in_range=original_scale,
out_range=np.uint8,
)
else:
array_data = signal["data"]
array_data = array_data.astype(endianess + "u1")
# Write full data stack:
# We need to pad each image with magic 'AA55', then a u32 serial
pixels = array_data.shape[-2:]
records = array_data.shape[:-2]
record_dtype = [
("MAGIC", endianess + "u2"),
("ID", endianess + "u4"),
("IMG", endianess + "u1", pixels),
]
magics = np.full(records, 0x55AA, dtype=endianess + "u2")
ids = np.arange(np.prod(records), dtype=endianess + "u4").reshape(records)
file_memmap = np.memmap(
filename, dtype=record_dtype, mode="r+", offset=file_location, shape=records
)
file_memmap["MAGIC"] = magics
file_memmap["ID"] = ids
if signal["attributes"]["_lazy"]:
cm = ProgressBar if show_progressbar else dummy_context_manager
with cm():
array_data.store(file_memmap["IMG"])
else:
file_memmap["IMG"] = array_data
file_memmap.flush()
file_writer.__doc__ %= (
FILENAME_DOC.replace("read", "write to"),
SIGNAL_DOC,
SHOW_PROGRESSBAR_DOC,
ENDIANESS_DOC,
)
|