File: _api.py

package info (click to toggle)
python-rosettasciio 0.7.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,648 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 22; ansic: 4
file content (1258 lines) | stat: -rw-r--r-- 42,933 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
"""NeXus file reading and writing."""

# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
#
import logging
import os

import dask.array as da
import h5py
import numpy as np

from rsciio._docstrings import (
    COMPRESSION_HDF5_DOC,
    COMPRESSION_HDF5_NOTES_DOC,
    FILENAME_DOC,
    LAZY_DOC,
    RETURNS_DOC,
    SIGNAL_DOC,
)
from rsciio._hierarchical import get_signal_chunks
from rsciio.hspy._api import overwrite_dataset
from rsciio.utils.tools import DTBox

_logger = logging.getLogger(__name__)


def _byte_to_string(value):
    """Decode a byte string.

    Parameters
    ----------
    value :  byte str

    Returns
    -------
    str
        decoded version of input value

    """
    try:
        text = value.decode("utf-8")
    except UnicodeDecodeError:
        text = value.decode("latin-1")
    return text.replace("\x00", "").rstrip()


def _parse_from_file(value, lazy=False):
    """To convert values from the hdf file to compatible formats.

    When reading string arrays we convert or keep string arrays as
    byte_strings (some io_plugins only supports byte-strings arrays so this
    ensures inter-compatibility across io_plugins)
    Arrays of length 1 - return the single value stored.
    Large datasets are returned as dask arrays if lazy=True.

    Parameters
    ----------
    value : input read from hdf file (array,list,tuple,string,int,float)
    lazy  : bool  {default: False}
        The lazy flag is only applied to values of size >=2

    Returns
    -------
    str,int, float, ndarray dask Array
        parsed value.

    """
    toreturn = value
    if isinstance(value, h5py.Dataset):
        if value.size < 2:
            toreturn = value[...].item()
        else:
            if lazy:
                if value.chunks:
                    toreturn = da.from_array(value, value.chunks)
                else:
                    chunks = get_signal_chunks(value.shape, value.dtype)
                    toreturn = da.from_array(value, chunks)
            else:
                toreturn = np.array(value)

    if isinstance(toreturn, np.ndarray) and value.shape == (1,):
        toreturn = toreturn[0]
    if isinstance(toreturn, bytes):
        toreturn = _byte_to_string(toreturn)
    if isinstance(toreturn, (np.ndarray)) and toreturn.dtype.char == "U":
        toreturn = toreturn.astype("S")
    return toreturn


def _parse_to_file(value):
    """Convert to a suitable format for writing to HDF5.

    For example unicode values are not compatible with hdf5 so conversion to
    byte strings is required.

    Parameters
    ----------
    value - input object to write to the hdf file

    Returns
    -------
    parsed value

    """
    totest = value
    toreturn = totest
    if isinstance(totest, (bytes, int, float)):
        toreturn = value
    if isinstance(totest, (list, tuple)):
        totest = np.array(value)
    if isinstance(totest, np.ndarray) and totest.dtype.char == "U":
        toreturn = np.array(totest).astype("S")
    elif isinstance(totest, (np.ndarray, da.Array)):
        toreturn = totest
    if isinstance(totest, str):
        toreturn = totest.encode("utf-8")
        toreturn = np.bytes_(toreturn)
    return toreturn


def _text_split(s, sep):
    """Split a string based of list of seperators.

    Parameters
    ----------
    s   : str
    sep : str  - seperator or list of seperators e.g. '.' or ['_','/']

    Returns
    -------
    list
       String sections split based on the seperators

    """
    stack = [s]
    for char in sep:
        pieces = []
        for substr in stack:
            pieces.extend(substr.split(char))
        stack = pieces
    if "" in stack:
        stack.remove("")
    return stack


def _getlink(h5group, rootkey, key):
    """Return the link target path.

    If a hdf group is a soft link or has a target attribute
    this method will return the target path. If no link is found
    return None.

    Returns
    -------
    str
        Soft link path if it exists, otherwise None

    """
    _target = None
    if rootkey != "/":
        if isinstance(h5group, h5py.Group):
            _link = h5group.get(key, getlink=True)
            if isinstance(_link, h5py.SoftLink):
                _target = _link.path
        if "target" in h5group.attrs.keys():
            _target = _parse_from_file(h5group.attrs["target"])
            if not _target.startswith("/"):
                _target = "/" + _target
            if _target == rootkey:
                _target = None

    return _target


def _get_nav_list(data, dataentry):
    """Get the list with information of each axes of the dataset

    Parameters
    ----------
    data : hdf dataset
        the dataset to be loaded.
    dataentry : hdf group
        the group with corresponding attributes.

    Returns
    -------
    nav_list : list
        contains information about each axes.
    """

    detector_index = 0
    nav_list = []
    # list indices...
    axis_index_list = []
    if "axes" in dataentry.attrs.keys():
        axes_key = dataentry.attrs["axes"]
        axes_list = ["."] * data.ndim
        if isinstance(axes_key, np.ndarray):
            axes_keys = axes_key[: data.ndim]
            for i, num in enumerate(axes_keys):
                axes_list[i] = _parse_from_file(num)
        elif isinstance(axes_key, (str, bytes)):
            axes_list = _parse_from_file(axes_key).split(",")[: data.ndim]
        else:
            axes_list[0] = _parse_from_file(axes_key)

        named_axes = list(range(len(axes_list)))
        for i, ax in enumerate(axes_list):
            if ax != ".":
                index_name = ax + "_indices"
                if index_name in dataentry.attrs:
                    ind_in_array = dataentry.attrs[index_name]
                    if len(ind_in_array.shape) > 0:
                        ind_in_array = int(ind_in_array[0])
                    else:
                        ind_in_array = int(ind_in_array)
                else:
                    ind_in_array = i
                axis_index_list.append(ind_in_array)
                if "units" in dataentry[ax].attrs:
                    units = _parse_from_file(dataentry[ax].attrs["units"])
                else:
                    units = ""

                navigation = True
                named_axes.remove(ind_in_array)

                if _is_numeric_data(dataentry[ax]):
                    if dataentry[ax].size > 1:
                        if _is_linear_axis(dataentry[ax]):
                            nav_list.append(
                                {
                                    "size": data.shape[ind_in_array],
                                    "index_in_array": ind_in_array,
                                    "name": ax,
                                    "scale": abs(dataentry[ax][1] - dataentry[ax][0]),
                                    "offset": min(dataentry[ax][0], dataentry[ax][-1]),
                                    "units": units,
                                    "navigate": navigation,
                                }
                            )
                        else:
                            nav_list.append(
                                {
                                    "size": data.shape[ind_in_array],
                                    "index_in_array": ind_in_array,
                                    "name": ax,
                                    "scale": 1,
                                    "offset": 0,
                                    "navigate": navigation,
                                }
                            )
                    else:
                        nav_list.append(
                            {
                                "size": 1,
                                "index_in_array": ind_in_array,
                                "name": ax,
                                "scale": 1,
                                "offset": dataentry[ax][0],
                                "units": units,
                                "navigate": True,
                            }
                        )
            else:
                if len(data.shape) == len(axes_list):
                    nav_list.append(
                        {
                            "size": data.shape[named_axes[detector_index]],
                            "index_in_array": named_axes[detector_index],
                            "scale": 1,
                            "offset": 0.0,
                            "units": "",
                            "navigate": False,
                        }
                    )
                    detector_index = detector_index + 1

    return nav_list


def _extract_hdf_dataset(group, dataset, lazy=False):
    """Import data from hdf path.

    Parameters
    ----------
    group : hdf group
        group from which to load the dataset
    dataset : str
        path to the dataset within the group
    lazy    : bool {default:True}
        If true use lazy opening, if false read into memory

    Returns
    -------
    dict
        A signal dictionary which can be used to instantiate a signal.

    """

    data = group[dataset]

    # exclude the dataset tagged by the signal attribute to avoid extracting
    # duplicated dataset, which is already loaded when loading NeXus data
    if "signal" in data.parent.attrs.keys():
        data_key = data.parent.attrs["signal"]
        if isinstance(data_key, bytes):
            data_key = data_key.decode()
        if dataset.split("/")[-1] == data_key:
            return None

    nav_list = _get_nav_list(data, data.parent)

    if lazy:
        if "chunks" in data.attrs.keys():
            chunks = data.attrs["chunks"]
        else:
            signal_axes = [d["index_in_array"] for d in nav_list if not d["navigate"]]
            chunks = get_signal_chunks(data.shape, data.dtype, signal_axes)
        data_lazy = da.from_array(data, chunks=chunks)
    else:
        data_lazy = np.array(data)

    dictionary = {
        "data": data_lazy,
        "metadata": {},
        "original_metadata": {},
        "axes": nav_list,
    }

    return dictionary


def _nexus_dataset_to_signal(group, nexus_dataset_path, lazy=False):
    """Load an NXdata set as a hyperspy signal.

    Parameters
    ----------
    group : hdf group containing the NXdata
    nexus_data_path : str
        Path to the NXdata set in the group
    lazy : bool, default : True
        lazy loading of data

    Returns
    -------
    dict
        A signal dictionary which can be used to instantiate a signal.

    """

    interpretation = None
    dataentry = group[nexus_dataset_path]
    if "signal" in dataentry.attrs.keys():
        if _is_int(dataentry.attrs["signal"]):
            data_key = "data"
        else:
            data_key = dataentry.attrs["signal"]
    else:
        _logger.info(
            "No signal attr associated with NXdata will\
                     try assume signal name is data"
        )
        if "data" not in dataentry.keys():
            raise ValueError(
                "Signal attribute not found in NXdata and "
                'attempt to find a default "data" key failed'
            )
        else:
            data_key = "data"

    if "interpretation" in dataentry.attrs.keys():
        interpretation = _parse_from_file(dataentry.attrs["interpretation"])

    data = dataentry[data_key]
    nav_list = _get_nav_list(data, dataentry)

    if lazy:
        if "chunks" in data.attrs.keys():
            chunks = data.attrs["chunks"]
        else:
            signal_axes = [d["index_in_array"] for d in nav_list if not d["navigate"]]
            chunks = get_signal_chunks(data.shape, data.dtype, signal_axes)
        data_lazy = da.from_array(data, chunks=chunks)
    else:
        data_lazy = np.array(data)

    if not nav_list:
        for i in range(data.ndim):
            nav_list.append(
                {
                    "size": data_lazy.shape[i],
                    "index_in_array": i,
                    "scale": 1,
                    "offset": 0.0,
                    "units": "",
                    "navigate": True,
                }
            )
    title = _text_split(nexus_dataset_path, "/")[-1]
    metadata = {"General": {"title": title}}

    #
    # if interpretation - reset the nav axes
    # assume the last dimensions are the signal
    #
    if interpretation:
        for x in nav_list:
            x["navigate"] = True
        if interpretation == "spectrum":
            nav_list[-1]["navigate"] = False
        elif interpretation == "image":
            nav_list[-1]["navigate"] = False
            nav_list[-2]["navigate"] = False

    dictionary = {"data": data_lazy, "axes": nav_list, "metadata": metadata}
    return dictionary


def file_reader(
    filename,
    lazy=False,
    dataset_key=None,
    dataset_path=None,
    metadata_key=None,
    skip_array_metadata=False,
    nxdata_only=False,
    hardlinks_only=False,
    use_default=False,
    mapping=None,
):
    """
    Read NXdata class or hdf datasets from a file and return signal(s).

    Parameters
    ----------
    %s
    %s
    dataset_key : None, str, list of str, default=None
        If None all datasets are returned.
        If a string or list of strings is provided only items
        whose path contain the string(s) are returned. For example
        dataset_key = ["instrument", "Fe"] will return
        data entries with instrument or Fe in their hdf path.
    dataset_path : None, str, list of str, default=None
        If None, no absolute path is searched.
        If a string or list of strings is provided items with the absolute
        paths specified will be returned. For example, dataset_path =
        ['/data/spectrum/Mn'], it returns the exact dataset with this path.
        It is not filtered by dataset_key, i.e. with dataset_key = ['Fe'],
        it still returns the specific dataset at '/data/spectrum/Mn'. It is
        empty if no dataset matching the absolute path provided is present.
    metadata_key : None, str, list of str, default=None
        Only return items from the original metadata whose path contain the
        strings .e.g metadata_key = ["instrument", "Fe"] will return
        all metadata entries with "instrument" or "Fe" in their hdf path.
    skip_array_metadata : bool, default=False
        Whether to skip loading metadata with an array entry. This is useful
        as metadata may contain large array that is redundant with the data.
    nxdata_only : bool, default=False
        If True only NXdata will be converted into a signal
        if False NXdata and any hdf datasets will be loaded as signals.
    hardlinks_only : bool, default=False
        If True any links (soft or External) will be ignored when loading.
    use_default : bool, default=False
        If True and a default NXdata is defined in the file load this as a
        signal. This will ignore the other keyword options. If True and no
        default is defined the file will be loaded according to
        the keyword options.
    mapping : None or dict
        Define the mapping from the original metadata to the returned
        metadata.

    %s

    See Also
    --------
    rsciio.utils.hdf5.list_datasets_in_file : Convenience function to list
        datasets present in a file.
    rsciio.utils.hdf5.read_metadata_from_file : Convenience function to read
        metadata present in a file.

    Notes
    -----
    Loading all datasets can result in a large number of signals
    Please review your datasets and use the dataset_key to target
    the datasets of interest.
    "keys" is a special keywords and prepended with "fix" in the metadata
    structure to avoid any issues.

    Datasets are all arrays with size>2 (arrays, lists)
    """
    # search for NXdata sets...

    if mapping is None:
        mapping = {}
    original_metadata = {}
    learning = {}
    fin = h5py.File(filename, "r")
    signal_dict_list = []

    dataset_key = _check_search_keys(dataset_key)
    dataset_path = _check_search_keys(dataset_path)
    metadata_key = _check_search_keys(metadata_key)
    original_metadata = _load_metadata(
        fin, lazy=lazy, skip_array_metadata=skip_array_metadata
    )
    # some default values...
    nexus_data_paths = []
    hdf_data_paths = []
    # check if a default dataset is defined
    if use_default:
        nexus_data_paths, hdf_data_paths = _find_data(
            fin, search_keys=None, hardlinks_only=False
        )
        nxentry = None
        nxdata = None
        if "attrs" in original_metadata:
            if "default" in original_metadata["attrs"]:
                nxentry = original_metadata["attrs"]["default"]
            else:
                rootlist = list(original_metadata.keys())
                rootlist.remove("attrs")
                if rootlist and len(rootlist) == 1:
                    nxentry == rootlist[0]
            if nxentry:
                if "default" in original_metadata[nxentry]["attrs"]:
                    nxdata = original_metadata[nxentry]["attrs"]["default"]
            if nxentry and nxdata:
                nxdata = "/" + nxentry + "/" + nxdata
            if nxdata:
                hdf_data_paths = []
                nexus_data_paths = [
                    nxpath for nxpath in nexus_data_paths if nxdata in nxpath
                ]

    # if no default found then search for the data as normal
    if not nexus_data_paths and not hdf_data_paths:
        nexus_data_paths, hdf_data_paths = _find_data(
            fin,
            search_keys=dataset_key,
            hardlinks_only=hardlinks_only,
            absolute_path=dataset_path,
        )

    for data_path in nexus_data_paths:
        dictionary = _nexus_dataset_to_signal(fin, data_path, lazy=lazy)
        entryname = _text_split(data_path, "/")[0]
        dictionary["mapping"] = mapping
        title = dictionary["metadata"]["General"]["title"]
        if entryname in original_metadata:
            if metadata_key is None:
                dictionary["original_metadata"] = original_metadata[entryname]
            else:
                dictionary["original_metadata"] = _find_search_keys_in_dict(
                    original_metadata, search_keys=metadata_key
                )
            # test if it's a hyperspy_nexus format and update metadata
            # as appropriate.
            if (
                "attrs" in original_metadata
                and "file_writer" in original_metadata["attrs"]
            ):
                if original_metadata["attrs"]["file_writer"] == "hyperspy_nexus_v3":
                    orig_metadata = original_metadata[entryname]
                    if "auxiliary" in orig_metadata:
                        oma = orig_metadata["auxiliary"]
                        if "learning_results" in oma:
                            learning = oma["learning_results"]
                            dictionary["attributes"] = {}
                            dictionary["attributes"]["learning_results"] = learning
                        if "original_metadata" in oma:
                            if metadata_key is None:
                                dictionary["original_metadata"] = oma[
                                    "original_metadata"
                                ]
                            else:
                                dictionary["original_metadata"] = (
                                    _find_search_keys_in_dict(
                                        (oma["original_metadata"]),
                                        search_keys=metadata_key,
                                    )
                                )
                            # reconstruct the axes_list for axes_manager
                            for k, v in oma["original_metadata"].items():
                                if k.startswith("_sig_"):
                                    hyper_ax = [
                                        ax_v
                                        for ax_k, ax_v in v.items()
                                        if ax_k.startswith("_axes")
                                    ]
                                    oma["original_metadata"][k]["axes"] = hyper_ax
                        if "hyperspy_metadata" in oma:
                            hyper_metadata = oma["hyperspy_metadata"]
                            hyper_metadata.update(dictionary["metadata"])
                            dictionary["metadata"] = hyper_metadata
        else:
            dictionary["original_metadata"] = {}

        signal_dict_list.append(dictionary)

    if not nxdata_only:
        for data_path in hdf_data_paths:
            datadict = _extract_hdf_dataset(fin, data_path, lazy=lazy)
            if datadict:
                title = data_path[1:].replace("/", "_")
                basic_metadata = {
                    "General": {
                        "original_filename": os.path.split(filename)[1],
                        "title": title,
                    }
                }
                datadict["metadata"].update(basic_metadata)
                signal_dict_list.append(datadict)

    return signal_dict_list


file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)


def _is_linear_axis(data):
    """Check if the data is linearly incrementing.

    Parameters
    ----------
    data : dask or numpy array

    Returns
    -------
    bool
       True or False

    """
    steps = np.diff(data)
    est_steps = np.array([steps[0]] * len(steps))
    return np.allclose(est_steps, steps, rtol=1.0e-5)


def _is_numeric_data(data):
    """Check that data contains numeric data.

    Parameters
    ----------
    data : dask or numpy array

    Returns
    -------
    bool
        True or False

    """
    try:
        data.astype(float)
        return True
    except ValueError:
        return False


def _is_int(s):
    """Check that s in an integer.

    Parameters
    ----------
    s : python object to test

    Returns
    -------
    bool
        True or False

    """
    try:
        int(s)
        return True
    except ValueError:
        return False


def _check_search_keys(search_keys):
    if isinstance(search_keys, str):
        return [search_keys]
    elif isinstance(search_keys, list):
        if all(isinstance(key, str) for key in search_keys):
            return search_keys
        else:
            raise ValueError("key list provided is not a list of strings")
    elif search_keys is None:
        return search_keys
    else:
        raise ValueError("search keys must be None, a string, " "or a list of strings")


def _find_data(group, search_keys=None, hardlinks_only=False, absolute_path=None):
    """Read from a nexus or hdf file and return a list of the dataset entries.

    The method iterates through group attributes and returns NXdata or
    hdf datasets of size >=2 if they're not already NXdata blocks
    and returns a list of the entries
    This is a convenience method to inspect a file to see which datasets
    are present rather than loading all the sets in the file as signals
    h5py.visit or visititems does not visit soft
    links or external links so an implementation of a recursive
    search is required. See https://github.com/h5py/h5py/issues/671


    Parameters
    ----------
    group : hdf group or File
    search_keys  : string, list of strings or None, default: None
        Only return items which contain the strings
        .e.g search_list = ["instrument","Fe"] will return
        hdf entries with instrument or Fe in their hdf path.
    hardlinks_only : bool , default : False
        Option to ignore links (soft or External) within the file.
    absolute_path : string, list of strings or None, default: None
        Return items with the exact specified absolute path

    Returns
    -------
    nx_dataset_list, hdf_dataset_list
        nx_dataset_list is a list of all NXdata paths
        hdf_dataset_list is a list of all hdf_datasets not linked to an
        NXdata set.

    """
    _check_search_keys(search_keys)
    _check_search_keys(absolute_path)
    all_hdf_datasets = []
    unique_hdf_datasets = []
    all_nx_datasets = []
    unique_nx_datasets = []
    rootname = ""

    def find_data_in_tree(group, rootname):
        for key, value in group.items():
            if rootname != "":
                rootkey = rootname + "/" + key
            else:
                rootkey = "/" + key
            if isinstance(value, h5py.Group):
                target = _getlink(group, rootkey, key)
                if "NX_class" in value.attrs:
                    if (
                        value.attrs["NX_class"] in [b"NXdata", "NXdata"]
                        and "signal" in value.attrs.keys()
                    ):
                        all_nx_datasets.append(rootkey)
                        if target is None:
                            unique_nx_datasets.append(rootkey)
                if hardlinks_only:
                    if target is None:
                        find_data_in_tree(value, rootkey)
                else:
                    find_data_in_tree(value, rootkey)
            else:
                if isinstance(value, h5py.Dataset):
                    if value.size >= 2:
                        target = _getlink(group, rootkey, key)
                        if not (value.dtype.type is str or value.dtype.type is object):
                            all_hdf_datasets.append(rootkey)
                            if target is None:
                                unique_hdf_datasets.append(rootkey)

    # need to use custom recursive function as visititems in h5py
    # does not visit links
    find_data_in_tree(group, rootname)

    if search_keys is None and absolute_path is None:
        # return all datasets
        if hardlinks_only:
            # return only the stored data, no linked data
            return unique_nx_datasets, unique_hdf_datasets
        else:
            return all_nx_datasets, all_hdf_datasets

    elif isinstance(search_keys, list) or isinstance(absolute_path, list):
        if hardlinks_only:
            # return only the stored data, no linked data
            nx_datasets = unique_nx_datasets
            hdf_datasets = unique_hdf_datasets
        else:
            nx_datasets = all_nx_datasets
            hdf_datasets = all_hdf_datasets

    matched_hdf = set()
    matched_nexus = set()
    # return data having the specified absolute paths
    if absolute_path is not None:
        matched_hdf.update(
            [j for j in hdf_datasets if any(s == j for s in absolute_path)]
        )
        matched_nexus.update(
            [j for j in nx_datasets if any(s == j for s in absolute_path)]
        )
    # return data which contains a search string
    if search_keys is not None:
        matched_hdf.update(
            [j for j in hdf_datasets if any(s in j for s in search_keys)]
        )
        matched_nexus.update(
            [j for j in nx_datasets if any(s in j for s in search_keys)]
        )

    matched_nexus = list(matched_nexus)
    matched_hdf = list(matched_hdf)

    return matched_nexus, matched_hdf


def _load_metadata(group, lazy=False, skip_array_metadata=False):
    """Search through a hdf group and return the group structure.

    h5py.visit or visititems does not visit soft
    links or external links so an implementation of a recursive
    search is required. See https://github.com/h5py/h5py/issues/671

    Parameters
    ----------
    group : hdf group
        location to load the metadata from
    lazy : bool , default : False
        Option for lazy loading
    skip_array_metadata : bool, default : False
        whether to skip loading array metadata

    Returns
    -------
    dict
        dictionary of group contents


    """
    rootname = ""

    def find_meta_in_tree(group, rootname, lazy=False, skip_array_metadata=False):
        tree = {}
        for key, item in group.attrs.items():
            new_key = _fix_exclusion_keys(key)
            if "attrs" not in tree.keys():
                tree["attrs"] = {}
            tree["attrs"][new_key] = _parse_from_file(item, lazy=lazy)

        for key, item in group.items():
            if rootname != "":
                rootkey = rootname + "/" + key
            else:
                rootkey = "/" + key
            new_key = _fix_exclusion_keys(key)
            if isinstance(item, h5py.Dataset):
                if item.attrs:
                    if new_key not in tree.keys():
                        tree[new_key] = {}
                    # avoid loading array as metadata
                    if skip_array_metadata:
                        if item.size < 2 and item.ndim == 0:
                            tree[new_key]["value"] = _parse_from_file(item, lazy=lazy)
                    else:
                        tree[new_key]["value"] = _parse_from_file(item, lazy=lazy)

                    for k, v in item.attrs.items():
                        if "attrs" not in tree[new_key].keys():
                            tree[new_key]["attrs"] = {}
                        tree[new_key]["attrs"][k] = _parse_from_file(v, lazy=lazy)
                else:
                    # this is to support hyperspy where datasets are not saved
                    # with attributes
                    if skip_array_metadata:
                        if item.size < 2 and item.ndim == 0:
                            tree[new_key] = _parse_from_file(item, lazy=lazy)
                    else:
                        tree[new_key] = _parse_from_file(item, lazy=lazy)

            elif isinstance(item, h5py.Group):
                if "NX_class" in item.attrs:
                    if item.attrs["NX_class"] not in [b"NXdata", "NXdata"]:
                        tree[new_key] = find_meta_in_tree(
                            item,
                            rootkey,
                            lazy=lazy,
                            skip_array_metadata=skip_array_metadata,
                        )
                else:
                    tree[new_key] = find_meta_in_tree(
                        item,
                        rootkey,
                        lazy=lazy,
                        skip_array_metadata=skip_array_metadata,
                    )

        return tree

    extracted_tree = find_meta_in_tree(
        group, rootname, lazy=lazy, skip_array_metadata=skip_array_metadata
    )
    return extracted_tree


def _fix_exclusion_keys(key):
    """Exclude hyperspy specific keys.

    Signal and DictionaryBrowser break if a
    a key is a dict method - e.g. {"keys":2.0}.

    This method prepends the key with ``fix_`` so the information is
    still present to work around this issue

    Parameters
    ----------
    key : str

    Returns
    -------
    str

    """
    if key.startswith("keys"):
        return "fix_" + key
    else:
        return key


def _find_search_keys_in_dict(tree, search_keys=None):
    """Search through a dict for search keys.

    This is a convenience method to inspect a file for a value
    rather than loading the file as a signal

    Parameters
    ----------
    tree         : h5py File object
    search_keys  : string or list of strings
        Only return items which contain the strings
        .e.g search_keys = ["instrument","Fe"] will return
        hdf entries with instrument or Fe in their hdf path.

    Returns
    -------
    dict
        When search_list is specified only full paths
        containing one or more search_keys will be returned

    """
    _check_search_keys(search_keys)
    metadata_dict = {}
    rootname = ""

    # recursive function
    def find_searchkeys_in_tree(myDict, rootname):
        for key, value in myDict.items():
            if rootname != "":
                rootkey = rootname + "/" + key
            else:
                rootkey = key
            if isinstance(search_keys, list) and any(
                [s1 in rootkey for s1 in search_keys]
            ):
                mod_keys = _text_split(rootkey, (".", "/"))
                # create the key, values in the dict
                p = metadata_dict
                for d in mod_keys[:-1]:
                    p = p.setdefault(d, {})
                p[mod_keys[-1]] = value
            if isinstance(value, dict):
                find_searchkeys_in_tree(value, rootkey)

    if search_keys is None:
        return tree
    else:
        find_searchkeys_in_tree(tree, rootname)
    return metadata_dict


def _write_nexus_groups(dictionary, group, skip_keys=None, **kwds):
    """Recursively iterate throuh dictionary and write groups to nexus.

    Parameters
    ----------
    dictionary : dict
        dictionary contents to store to hdf group
    group : hdf group
        location to store dictionary
    skip_keys : str or list of str
        the key(s) to skip when writing into the group
    **kwds : additional keywords
       additional keywords to pass to h5py.create_dataset method

    """
    if skip_keys is None:
        skip_keys = []
    elif isinstance(skip_keys, str):
        skip_keys = [skip_keys]

    for key, value in dictionary.items():
        if key == "attrs" or key in skip_keys:
            # we will handle attrs later... and skip unwanted keys
            continue
        if isinstance(value, dict):
            if "attrs" in value:
                if (
                    "NX_class" in value["attrs"]
                    and value["attrs"]["NX_class"] == "NXdata"
                ):
                    continue
            if (
                "value" in value.keys()
                and not isinstance(value["value"], dict)
                and len(set(list(value.keys()) + ["attrs", "value"])) == 2
            ):
                value = value["value"]
            else:
                _write_nexus_groups(
                    value, group.require_group(key), skip_keys=skip_keys, **kwds
                )
        if isinstance(value, (list, tuple, np.ndarray, da.Array)):
            if all(isinstance(v, dict) for v in value):
                # a list of dictionary is from the axes of HyperSpy signal
                for i, ax_dict in enumerate(value):
                    ax_key = "_axes_" + str(i)
                    _write_nexus_groups(
                        ax_dict,
                        group.require_group(ax_key),
                        skip_keys=skip_keys,
                        **kwds,
                    )
            else:
                data = _parse_to_file(value)
                overwrite_dataset(group, data, key, chunks=None, **kwds)
        elif isinstance(value, (int, float, str, bytes)):
            group.create_dataset(key, data=_parse_to_file(value))
        else:
            if value is not None and key not in group:
                _write_nexus_groups(
                    value, group.require_group(key), skip_keys=skip_keys, **kwds
                )


def _write_nexus_attr(dictionary, group, skip_keys=None):
    """Recursively iterate through dictionary and write "attrs" dictionaries.

    This step is called after the groups and datasets have been created

    Parameters
    ----------
    dictionary : dict
        Input dictionary to be written to the hdf group
    group : hdf group
        location to store the attrs sections of the dictionary

    """
    if skip_keys is None:
        skip_keys = []
    elif isinstance(skip_keys, str):
        skip_keys = [skip_keys]

    for key, value in dictionary.items():
        if key == "attrs":
            for k, v in value.items():
                group.attrs[k] = _parse_to_file(v)
        else:
            if isinstance(value, dict):
                if "attrs" in value:
                    if (
                        "NX_class" in value["attrs"]
                        and value["attrs"]["NX_class"] == "NXdata"
                    ):
                        continue
                if key not in skip_keys:
                    _write_nexus_attr(dictionary[key], group[key], skip_keys=skip_keys)


def _write_signal(signal, nxgroup, signal_name, **kwds):
    """Store the signal data as an NXdata dataset.

    Parameters
    ----------
    signal : HyperSpy signal dictionary
    nxgroup : HDF group
        Entry at which to save signal data
    signal_name : str
        Name under which to store the signal entry in the file

    """
    signal_axes = [ax for ax in signal["axes"] if not ax["navigate"]]
    data = signal["data"]
    if len(signal_axes) == 1:
        record_by = "spectrum"
    elif len(signal_axes) == 2:
        record_by = "image"
    else:
        record_by = ""

    nxdata = nxgroup.require_group(signal_name)
    nxdata.attrs["NX_class"] = _parse_to_file("NXdata")
    nxdata.attrs["signal"] = _parse_to_file("data")
    if record_by:
        nxdata.attrs["interpretation"] = _parse_to_file(record_by)
    overwrite_dataset(
        nxdata,
        data,
        "data",
        chunks=None,
        signal_axes=[signal["axes"].index(ax) for ax in signal_axes],
        **kwds,
    )
    axis_names = [_parse_to_file(".")] * len(data.shape)
    for i, ax in enumerate(signal["axes"]):
        if ax["name"] is not None:
            index_in_array = signal["axes"].index(ax)
            indices = _parse_to_file(ax["name"] + "_indices")
            nxdata.attrs[indices] = _parse_to_file(index_in_array)
            if ax["_type"] == "DataAxis":
                data = ax["axis"]
            elif ax["_type"] == "UniformDataAxis":
                data = ax["offset"] + ax["scale"] * np.arange(ax["size"])
            elif ax["_type"] == "FunctionalDataAxis":
                raise ValueError("Not supported")
            else:
                raise RuntimeError(f"Axis of type ({ax['_type']}) are not supported.")
            dset = nxdata.require_dataset(
                ax["name"], data=data, shape=data.shape, dtype=data.dtype
            )
            if ax["units"] is not None:
                dset.attrs["units"] = ax["units"]
            axis_names[index_in_array] = ax["name"]

    nxdata.attrs["axes"] = _parse_to_file(axis_names)
    return nxdata


def file_writer(
    filename,
    signal,
    save_original_metadata=True,
    skip_metadata_key=None,
    use_default=False,
    compression="gzip",
):
    """
    Write the signal and metadata as a NeXus file.

    This will save the signal in NXdata format in the file.
    As the form of the metadata can vary and is not validated it will
    be stored as an NXcollection (an unvalidated collection)

    Parameters
    ----------
    %s
    %s
    save_original_metadata : bool , default : True
        Option to save hyperspy.original_metadata with the signal.
        A loaded NeXus file may have a large amount of data
        when loaded which you may wish to omit on saving.
    skip_metadata_key : str or list of str, default : None
        The key(s) to skip when saving original metadata. This is useful
        when some metadata keys should be ignored.
    use_default : bool , default : False
        Option to define the default dataset in the file.
        If set to True the signal or first signal in the list of signals
        will be defined as the default (following NeXus v3 data rules).
    %s

    See Also
    --------
    rsciio.utils.hdf5.list_datasets_in_file : Convenience function to list
        datasets present in a file.
    rsciio.utils.hdf5.read_metadata_from_file : Convenience function to read
        metadata present in a file.

    Notes
    -----
    %s
    """
    if not isinstance(signal, list):
        signal = [signal]

    with h5py.File(filename, mode="w") as f:
        f.attrs["file_format"] = "nexus"
        f.attrs["file_writer"] = "hyperspy_nexus_v3"

        if use_default:
            f.attrs["default"] = "entry1"
        #
        # write the signal
        #

        for i, sig in enumerate(signal):
            md = DTBox(sig["metadata"], box_dots=True)
            nxentry = f.create_group(f"entry{i + 1}")
            nxentry.attrs["NX_class"] = _parse_to_file("NXentry")

            signal_name = md.get("General.title")
            if not signal_name:
                signal_name = f"unnamed__{i}"
            if "/" in signal_name:
                signal_name = signal_name.replace("/", "_")
            if signal_name.startswith("__"):
                signal_name = signal_name[2:]

            if i == 0 and use_default:
                nxentry.attrs["default"] = signal_name

            nxaux = nxentry.create_group("auxiliary")
            nxaux.attrs["NX_class"] = _parse_to_file("NXentry")
            _write_signal(sig, nxentry, signal_name, compression=compression)

            learn = sig.get("learning_results")
            if learn:
                nxlearn = nxaux.create_group("learning_results")
                nxlearn.attrs["NX_class"] = _parse_to_file("NXcollection")
                _write_nexus_groups(learn, nxlearn, compression=compression)
                _write_nexus_attr(learn, nxlearn)
            #
            # write metadata
            #
            if save_original_metadata:
                om = sig.get("original_metadata")
                if om:
                    nxom = nxaux.create_group("original_metadata")
                    nxom.attrs["NX_class"] = _parse_to_file("NXcollection")
                    # write the groups and structure
                    _write_nexus_groups(
                        om, nxom, skip_keys=skip_metadata_key, compression=compression
                    )
                    _write_nexus_attr(om, nxom, skip_keys=skip_metadata_key)

            md = sig.get("metadata")
            if md:
                nxmd = nxaux.create_group("hyperspy_metadata")
                nxmd.attrs["NX_class"] = _parse_to_file("NXcollection")
                # write the groups and structure
                _write_nexus_groups(md, nxmd, compression=compression)
                _write_nexus_attr(md, nxmd)


file_writer.__doc__ %= (
    FILENAME_DOC.replace("read", "write to"),
    SIGNAL_DOC,
    COMPRESSION_HDF5_DOC,
    COMPRESSION_HDF5_NOTES_DOC,
)