File: _api.py

package info (click to toggle)
python-rosettasciio 0.7.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,648 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 22; ansic: 4
file content (544 lines) | stat: -rw-r--r-- 17,387 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

import logging
import os
from collections.abc import MutableMapping
from functools import partial
from warnings import warn

import h5py
import numpy as np
import pyUSID as usid
import sidpy

from rsciio._docstrings import (
    FILENAME_DOC,
    LAZY_DOC,
    RETURNS_DOC,
    SIGNAL_DOC,
)

_logger = logging.getLogger(__name__)


version = usid.__version__

# ######### UTILITIES THAT SIMPLIFY READING FROM H5USID FILES #################


def _get_dim_dict(labels, units, val_func, ignore_non_uniform_dims=True):
    """
    Gets a list of dictionaries that correspond to axes for HyperSpy Signal
    objects

    Parameters
    ----------
    labels : list
        List of strings denoting the names of the dimension
    units : list
        List of strings denoting the units for the dimensions
    val_func : callable
        Function that will return the values over which a dimension was varied
    ignore_non_uniform_dims : bool, Optional. Default = True
        If set to True, a warning will be raised instead of a ValueError when a
        dimension is encountered which was non-uniformly.

    Returns
    -------
    dict
        Dictionary of dictionaries that correspond to axes for HyperSpy Signal
        objects

    Notes
    -----
    For a future release of HyperSpy:
    If a dimension was varied non-uniformly, one would need to set the
    appropriate quantity in the quantity equal to dim_vals. At that point,
    the typical offset and scale parameters would be (hopefully) ignored.
    """
    dim_dict = dict()
    for dim_name, units in zip(labels, units):
        # dim_vals below contains the full 1D tensor that shows how a dimension
        # was varied. If the parameter was varied uniformly, the offset, size,
        # and scale can be extracted easily.
        dim_vals = val_func(dim_name)
        if len(dim_vals) == 1:
            # Empty dimension!
            continue
        else:
            try:
                step_size = sidpy.base.num_utils.get_slope(dim_vals)
            except ValueError:
                # non-uniform dimension! - see notes above
                if ignore_non_uniform_dims:
                    warn("Ignoring non-uniformity of dimension: " "{}".format(dim_name))
                    step_size = 1
                    dim_vals[0] = 0
                else:
                    raise ValueError(
                        "Cannot load provided dataset. "
                        "Parameter: {} was varied "
                        "non-uniformly. Supply keyword "
                        'argument "ignore_non_uniform_dims='
                        'True" to ignore this '
                        "error".format(dim_name)
                    )

        dim_dict[dim_name] = {
            "size": len(dim_vals),
            "name": dim_name,
            "units": units,
            "scale": step_size,
            "offset": dim_vals[0],
        }
    return dim_dict


def _assemble_dim_list(dim_dict, dim_names):
    """
    Assembles a list of dictionary objects (axes) in the same order as
    specified in dim_names

    Parameters
    ----------
    dim_dict : dict
        Dictionary of dictionaries that correspond to axes for HyperSpy Signal
        objects
    dim_names : list
        List of strings denoting the names of the dimension

    Returns
    -------
    list
        List of dictionaries that correspond to axes for HyperSpy Signal
        objects
    """
    dim_list = []
    for dim_name in dim_names:
        try:
            dim_list.append(dim_dict[dim_name])
        except KeyError:
            pass
    return dim_list


def _split_descriptor(desc):
    """
    Splits a string such as "Quantity [units]" or "Quantity (units)" into the
    quantity and unit strings

    Parameters
    ----------
    desc : str
        Descriptor of a dimension or the main dataset itself

    Returns
    -------
    quant : str
        Name of the physical quantity
    units : str
        Units corresponding to the physical quantity
    """
    desc = desc.strip()
    ind = desc.rfind("(")
    if ind < 0:
        ind = desc.rfind("[")
        if ind < 0:
            return desc, ""

    quant = desc[:ind].strip()
    units = desc[ind:]
    for item in "()[]":
        units = units.replace(item, "")
    return quant, units


def _convert_to_signal_dict(
    ndim_form,
    quantity,
    units,
    dim_dict_list,
    h5_path,
    h5_dset_path,
    name,
    sig_type="",
    group_attrs={},
):
    """
    Packages required components that make up a Signal object

    Parameters
    ----------
    ndim_form : numpy.ndarray
        N-dimensional form of the main dataset
    quantity : str
        Physical quantity of the measurement
    units : str
        Corresponding units
    dim_dict_list : list
        List of dictionaries that instruct the axes corresponding to the main
        dataset
    h5_path : str
        Absolute path of the original USID HDF5 file
    h5_dset_path : str
        Absolute path of the USIDataset within the HDF5 file
    name : str
        Name of the HDF5 dataset
    sig_type : str, Optional
        Type of measurement
    group_attrs : dict, Optional. Default = {}
        Any attributes at the channel and group levels

    Returns
    -------

    """

    sig = {
        "data": ndim_form,
        "axes": dim_dict_list,
        "metadata": {
            "Signal": {"signal_type": sig_type},
            "General": {"original_filename": h5_path, "title": name},
        },
        "original_metadata": {
            "quantity": quantity,
            "units": units,
            "dataset_path": h5_dset_path,
            "original_file_type": "USID HDF5",
            "pyUSID_version": usid.__version__,
            "parameters": group_attrs,
        },
    }
    return sig


def _usidataset_to_signal_dict(h5_main, ignore_non_uniform_dims=True, lazy=False):
    """
    Converts a single specified USIDataset object to one or more Signal objects

    Parameters
    ----------
    h5_main : pyUSID.USIDataset
        USID Main dataset
    ignore_non_uniform_dims : bool, Default True
        If True, parameters that were varied non-uniformly in the desired
        dataset will result in Exceptions.
        Else, all such non-uniformly varied parameters will be treated as
        uniformly varied parameters and
        a Signal object will be generated.
    %s

    %s
    """
    h5_main = usid.USIDataset(h5_main)
    # TODO: Cannot handle data without N-dimensional form yet
    # First get dictionary of axes that HyperSpy likes to see. Ignore singular
    # dimensions
    pos_dict = _get_dim_dict(
        h5_main.pos_dim_labels,
        usid.hdf_utils.get_attr(h5_main.h5_pos_inds, "units"),
        h5_main.get_pos_values,
        ignore_non_uniform_dims=ignore_non_uniform_dims,
    )
    spec_dict = _get_dim_dict(
        h5_main.spec_dim_labels,
        usid.hdf_utils.get_attr(h5_main.h5_spec_inds, "units"),
        h5_main.get_spec_values,
        ignore_non_uniform_dims=ignore_non_uniform_dims,
    )

    num_spec_dims = len(spec_dict)
    num_pos_dims = len(pos_dict)
    _logger.info(
        "Dimensions: Positions: {}, Spectroscopic: {}" ".".format(
            num_pos_dims, num_spec_dims
        )
    )

    ret_vals = usid.hdf_utils.reshape_to_n_dims(h5_main, get_labels=True, lazy=lazy)
    ds_nd, success, dim_labs = ret_vals

    if success is not True:
        raise ValueError("Dataset could not be reshaped!")
    ds_nd = ds_nd.squeeze()
    _logger.info("N-dimensional shape: {}".format(ds_nd.shape))
    _logger.info("N-dimensional labels: {}".format(dim_labs))

    # Capturing metadata present in conventional h5USID files:
    group_attrs = dict()
    h5_chan_grp = h5_main.parent
    if isinstance(h5_chan_grp, h5py.Group):
        if "Channel" in h5_chan_grp.name.split("/")[-1]:
            group_attrs = sidpy.hdf_utils.get_attributes(h5_chan_grp)
            h5_meas_grp = h5_main.parent
            if isinstance(h5_meas_grp, h5py.Group):
                if "Measurement" in h5_meas_grp.name.split("/")[-1]:
                    temp = sidpy.hdf_utils.get_attributes(h5_meas_grp)
                    group_attrs.update(temp)

    """
    Normally, we might have been done but the order of the dimensions may be
    different in N-dim form and
    attributes in ancillary dataset
    """
    num_pos_dims = len(h5_main.pos_dim_labels)
    pos_dim_list = _assemble_dim_list(pos_dict, dim_labs[:num_pos_dims])
    spec_dim_list = _assemble_dim_list(spec_dict, dim_labs[num_pos_dims:])
    dim_list = pos_dim_list + spec_dim_list

    _, is_complex, is_compound, _, _ = sidpy.hdf.dtype_utils.check_dtype(h5_main)

    trunc_func = partial(
        _convert_to_signal_dict,
        dim_dict_list=dim_list,
        h5_path=h5_main.file.filename,
        h5_dset_path=h5_main.name,
        name=h5_main.name.split("/")[-1],
        group_attrs=group_attrs,
    )

    # Extracting the quantity and units of the main dataset
    quant, units = _split_descriptor(h5_main.data_descriptor)

    if is_compound:
        sig = []
        # Iterate over each dimension name:
        for name in ds_nd.dtype.names:
            q_sub, u_sub = _split_descriptor(name)
            sig.append(trunc_func(ds_nd[name], q_sub, u_sub, sig_type=quant))
    else:
        sig = [trunc_func(ds_nd, quant, units)]

    return sig


_usidataset_to_signal_dict.__doc__ %= (LAZY_DOC, RETURNS_DOC)


# ######## UTILITIES THAT SIMPLIFY WRITING TO H5USID FILES ####################


def _flatten_dict(nested_dict, parent_key="", sep="-"):
    """
    Flattens a nested dictionary

    Parameters
    ----------
    nested_dict : dict
        Nested dictionary
    parent_key : str, Optional
        Name of current parent
    sep : str, Optional. Default='-'
        Separator between the keys of different levels

    Returns
    -------
    dict
        Dictionary whose keys are flattened to a single level
    Notes
    -----
    Taken from https://stackoverflow.com/questions/6027558/flatten-nested-
    dictionaries-compressing-keys
    """
    items = []
    for k, v in nested_dict.items():
        new_key = parent_key + sep + k if parent_key else k
        if isinstance(v, MutableMapping):
            items.extend(_flatten_dict(v, new_key, sep=sep).items())
        else:
            items.append((new_key, v))
    return dict(items)


def _axes_list_to_dimensions(axes_list, data_shape, is_spec):
    dim_list = []
    dim_type = "Pos"
    if is_spec:
        dim_type = "Spec"
    # for dim_ind, (dim_size, dim) in enumerate(zip(data_shape, axes_list)):
    # we are going by data_shape for order (slowest to fastest)
    # so the order in axes_list does not matter
    for dim_ind, dim in enumerate(axes_list):
        dim = axes_list[dim_ind]
        dim_name = dim_type + "_Dim_" + str(dim_ind)
        if isinstance(dim["name"], str):
            temp = dim["name"].strip()
            if len(temp) > 0:
                dim_name = temp
        dim_units = "a. u."
        if isinstance(dim["units"], str):
            temp = dim["units"].strip()
            if len(temp) > 0:
                dim_units = temp
                # use REAL dimension size rather than what is presented in the
                # axes manager
        dim_size = data_shape[len(data_shape) - 1 - dim_ind]
        ar = np.arange(dim_size) * dim["scale"] + dim["offset"]
        dim_list.append(usid.Dimension(dim_name, dim_units, ar))
    if len(dim_list) == 0:
        return usid.Dimension("Arb", "a. u.", 1)
    return dim_list[::-1]


# ####### REQUIRED FUNCTIONS FOR AN IO PLUGIN #################################


def file_reader(filename, lazy=False, dataset_path=None, ignore_non_uniform_dims=True):
    """
    Read a USID Main dataset present in an HDF5 file into a HyperSpy Signal.

    Parameters
    ----------
    %s
    %s
    dataset_path : str, optional
        Absolute path of USID Main HDF5 dataset.
        Default is ``None`` - all Main Datasets will be read. Given that HDF5
        files can accommodate very large datasets, lazy reading is strongly
        recommended.
        If a string like ``"/Measurement_000/Channel_000/My_Dataset"`` is
        provided, the specific dataset will be loaded.
    ignore_non_uniform_dims : bool, optional
        If ``True`` (default), parameters that were varied non-uniformly in the
        desired dataset will result in Exceptions.
        Else, all such non-uniformly varied parameters will be treated as
        uniformly varied parameters and a Signal object will be generated.

    %s
    """
    if not isinstance(filename, str):
        raise TypeError("filename should be a string")
    if not os.path.isfile(filename):
        raise FileNotFoundError(f"No file found at: {filename}")

    # Need to keep h5 file handle open indefinitely if lazy
    # Using "with" will cause the file to be closed
    h5_f = h5py.File(filename, "r")
    if dataset_path is None:
        all_main_dsets = usid.hdf_utils.get_all_main(h5_f)
        signals = []
        for h5_dset in all_main_dsets:
            # Note that the function returns a list already.
            # Should not append
            signals += _usidataset_to_signal_dict(
                h5_dset,
                ignore_non_uniform_dims=ignore_non_uniform_dims,
                lazy=lazy,
            )
    else:
        if not isinstance(dataset_path, str):
            raise TypeError("'dataset_path' should be a string")
        h5_dset = h5_f[dataset_path]
        signals = _usidataset_to_signal_dict(
            h5_dset, ignore_non_uniform_dims=ignore_non_uniform_dims, lazy=lazy
        )
    if not lazy:
        h5_f.close()
    return signals


file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)


def file_writer(filename, signal, **kwds):
    """
    Write a HyperSpy Signal object to a HDF5 file formatted according to USID.

    Parameters
    ----------
    %s
    %s
    **kwds : dict, optional
        All other keyword arguments will be passed to
        :py:func:`pyUSID.io.hdf_utils.model.write_main_dataset`.
    """
    append = False
    if os.path.exists(filename):
        append = True

    hs_shape = signal["data"].shape

    parm_dict = _flatten_dict(signal["metadata"])
    temp = signal["original_metadata"]
    parm_dict.update(_flatten_dict(temp, parent_key="Original"))

    axes = signal["axes"]
    nav_axes = [ax for ax in axes if ax["navigate"]][::-1]
    sig_axes = [ax for ax in axes if not ax["navigate"]][::-1]
    nav_dim = len(nav_axes)

    data = signal["data"]
    # data is assumed to have dimensions arranged from slowest to fastest
    # varying dimensions
    if nav_dim > 0 and len(sig_axes) > 0:
        # now flatten to 2D:
        data = data.reshape(np.prod(hs_shape[:nav_dim]), np.prod(hs_shape[nav_dim:]))
        pos_dims = _axes_list_to_dimensions(nav_axes, hs_shape[:nav_dim], False)
        spec_dims = _axes_list_to_dimensions(sig_axes, hs_shape[nav_dim:], True)
    elif nav_dim == 0:
        # only spectroscopic:
        # now flatten to 2D:
        data = data.reshape(1, -1)
        pos_dims = _axes_list_to_dimensions(nav_axes, [], False)
        spec_dims = _axes_list_to_dimensions(sig_axes, hs_shape, True)
    else:
        # now flatten to 2D:
        data = data.reshape(-1, 1)
        pos_dims = _axes_list_to_dimensions(nav_axes, hs_shape, False)
        spec_dims = _axes_list_to_dimensions(sig_axes, [], True)

    #  Does HyperSpy store the physical quantity and units somewhere?
    phy_quant = "Unknown Quantity"
    phy_units = "Unknown Units"
    dset_name = "Raw_Data"

    if not append:
        tran = usid.NumpyTranslator()
        _ = tran.translate(
            filename,
            dset_name,
            data,
            phy_quant,
            phy_units,
            pos_dims,
            spec_dims,
            parm_dict=parm_dict,
            slow_to_fast=True,
            **kwds,
        )
    else:
        with h5py.File(filename, mode="r+") as h5_f:
            h5_grp = usid.hdf_utils.create_indexed_group(h5_f, "Measurement")
            usid.hdf_utils.write_simple_attrs(h5_grp, parm_dict)
            h5_grp = usid.hdf_utils.create_indexed_group(h5_grp, "Channel")
            _ = usid.hdf_utils.write_main_dataset(
                h5_grp,
                data,
                dset_name,
                phy_quant,
                phy_units,
                pos_dims,
                spec_dims,
                slow_to_fast=True,
                **kwds,
            )


file_writer.__doc__ %= (FILENAME_DOC.replace("read", "write to"), SIGNAL_DOC)