1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
.. _tutorial:
Tutorial
------------------------------------------------------------------------------
This tutorial demonstrates how to take advantage of :ref:`Rtree <home>` for
querying data that have a spatial component that can be modeled as bounding
boxes.
Creating an index
..............................................................................
The following section describes the basic instantiation and usage of
:ref:`Rtree <home>`.
Import
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After :ref:`installing <installation>` :ref:`Rtree <home>`, you should be able to
open up a Python prompt and issue the following::
>>> from rtree import index
:py:mod:`rtree` is organized as a Python package with a couple of modules
and two major classes - :py:class:`rtree.index.Index` and
:py:class:`rtree.index.Property`. Users manipulate these classes to interact
with the index.
Construct an instance
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After importing the index module, construct an index with the default
construction::
>>> idx = index.Index()
.. note::
While the default construction is useful in many cases, if you want to
manipulate how the index is constructed you will need pass in a
:py:class:`rtree.index.Property` instance when creating the index.
Create a bounding box
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After instantiating the index, create a bounding box that we can
insert into the index::
>>> left, bottom, right, top = (0.0, 0.0, 1.0, 1.0)
.. note::
The coordinate ordering for all functions are sensitive the the index's
:py:attr:`~rtree.index.Index.interleaved` data member. If
:py:attr:`~rtree.index.Index.interleaved` is False, the coordinates must
be in the form [xmin, xmax, ymin, ymax, ..., ..., kmin, kmax]. If
:py:attr:`~rtree.index.Index.interleaved` is True, the coordinates must be
in the form [xmin, ymin, ..., kmin, xmax, ymax, ..., kmax].
Insert records into the index
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Insert an entry into the index::
>>> idx.insert(0, (left, bottom, right, top))
.. note::
Entries that are inserted into the index are not unique in either the
sense of the `id` or of the bounding box that is inserted with index
entries. If you need to maintain uniqueness, you need to manage that before
inserting entries into the Rtree.
.. note::
Inserting a point, i.e. where left == right && top == bottom, will
essentially insert a single point entry into the index instead of copying
extra coordinates and inserting them. There is no shortcut to explicitly
insert a single point, however.
Query the index
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are three primary methods for querying the index.
:py:meth:`rtree.index.Index.intersection` will return you index entries that
*cross* or are *contained* within the given query window.
:py:meth:`rtree.index.Index.intersection`
Intersection
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Given a query window, return ids that are contained within the window::
>>> list(idx.intersection((1.0, 1.0, 2.0, 2.0)))
[0]
Given a query window that is beyond the bounds of data we have in the
index::
>>> list(idx.intersection((1.0000001, 1.0000001, 2.0, 2.0)))
[]
Nearest Neighbors
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
The following finds the 1 nearest item to the given bounds. If multiple items
are of equal distance to the bounds, both are returned::
>>> idx.insert(1, (left, bottom, right, top))
>>> list(idx.nearest((1.0000001, 1.0000001, 2.0, 2.0), 1))
[0, 1]
.. _clustered:
Using Rtree as a cheapo spatial database
..............................................................................
Rtree also supports inserting any object you can pickle into the index (called
a clustered index in `libspatialindex`_ parlance). The following inserts the
picklable object ``42`` into the index with the given id::
>>> index.insert(id=id, bounds=(left, bottom, right, top), obj=42)
You can then return a list of objects by giving the ``objects=True`` flag
to intersection::
>>> [n.object for n in idx.intersection((left, bottom, right, top), objects=True)]
[None, None, 42]
.. warning::
`libspatialindex`_'s clustered indexes were not designed to be a database.
You get none of the data integrity protections that a database would
purport to offer, but this behavior of :ref:`Rtree <home>` can be useful
nonetheless. Consider yourself warned. Now go do cool things with it.
Serializing your index to a file
..............................................................................
One of :ref:`Rtree <home>`'s most useful properties is the ability to
serialize Rtree indexes to disk. These include the clustered indexes
described :ref:`here <clustered>`::
>>> file_idx = index.Rtree('rtree')
>>> file_idx.insert(1, (left, bottom, right, top))
>>> file_idx.insert(2, (left - 1.0, bottom - 1.0, right + 1.0, top + 1.0))
>>> [n for n in file_idx.intersection((left, bottom, right, top))]
[1, 2]
.. note::
By default, if an index file with the given name `rtree` in the example
above already exists on the file system, it will be opened in append mode
and not be re-created. You can control this behavior with the
:py:attr:`rtree.index.Property.overwrite` property of the index property
that can be given to the :py:class:`rtree.index.Index` constructor.
.. seealso::
:ref:`performance` describes some parameters you can tune to make
file-based indexes run a bit faster. The choices you make for the
parameters is entirely dependent on your usage.
Modifying file names
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rtree uses the extensions `dat` and `idx` by default for the two index files
that are created when serializing index data to disk. These file extensions
are controllable using the :py:attr:`rtree.index.Property.dat_extension` and
:py:attr:`rtree.index.Property.idx_extension` index properties.
::
>>> p = rtree.index.Property()
>>> p.dat_extension = 'data'
>>> p.idx_extension = 'index'
>>> file_idx = index.Index('rtree', properties = p)
3D indexes
..............................................................................
As of Rtree version 0.5.0, you can create 3D (actually kD) indexes. The
following is a 3D index that is to be stored on disk. Persisted indexes are
stored on disk using two files -- an index file (.idx) and a data (.dat) file.
You can modify the extensions these files use by altering the properties of
the index at instantiation time. The following creates a 3D index that is
stored on disk as the files ``3d_index.data`` and ``3d_index.index``::
>>> from rtree import index
>>> p = index.Property()
>>> p.dimension = 3
>>> p.dat_extension = 'data'
>>> p.idx_extension = 'index'
>>> idx3d = index.Index('3d_index',properties=p)
>>> idx3d.insert(1, (0, 0, 60, 60, 23.0, 42.0))
>>> idx3d.intersection( (-1, -1, 62, 62, 22, 43))
[1L]
ZODB and Custom Storages
..............................................................................
https://mail.zope.org/pipermail/zodb-dev/2010-June/013491.html contains a custom
storage backend for `ZODB`_
.. _ZODB: http://www.zodb.org/
.. _`libspatialindex`: http://libspatialindex.github.com
|