1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
from __future__ import annotations
import os
import unittest
from collections import defaultdict, namedtuple
from collections.abc import Iterator
from math import ceil
from typing import Any
import numpy as np
from numpy.random import default_rng
from rtree.index import Index, Property, RT_TPRTree
class Cartesian(
namedtuple(
"Cartesian",
("id", "time", "x", "y", "x_vel", "y_vel", "update_time", "out_of_bounds"),
)
):
__slots__ = ()
def getX(self, t: float) -> float:
return self.x + self.x_vel * (t - self.time)
def getY(self, t: float) -> float:
return self.y + self.y_vel * (t - self.time)
def getXY(self, t: float) -> tuple[float, float]:
return self.getX(t), self.getY(t)
def get_coordinates(
self, t_now: float | None = None
) -> tuple[
tuple[float, float, float, float],
tuple[float, float, float, float],
float | tuple[float, float],
]:
return (
(self.x, self.y, self.x, self.y),
(self.x_vel, self.y_vel, self.x_vel, self.y_vel),
self.time if t_now is None else (self.time, t_now),
)
class QueryCartesian(
namedtuple("QueryCartesian", ("start_time", "end_time", "x", "y", "dx", "dy"))
):
__slots__ = ()
def get_coordinates(
self,
) -> tuple[
tuple[float, float, float, float],
tuple[float, float, float, float],
tuple[float, float],
]:
return (
(self.x - self.dx, self.y - self.dy, self.x + self.dx, self.y + self.dy),
(0, 0, 0, 0),
(self.start_time, self.end_time),
)
def data_generator(
dataset_size: int = 100,
simulation_length: int = 10,
max_update_interval: int = 20,
queries_per_time_step: int = 5,
min_query_extent: float = 0.05,
max_query_extent: float = 0.1,
horizon: int = 20,
min_query_interval: int = 2,
max_query_interval: int = 10,
agility: float = 0.01,
min_speed: float = 0.0025,
max_speed: float = 0.0166,
min_x: int = 0,
min_y: int = 0,
max_x: int = 1,
max_y: int = 1,
) -> Iterator[tuple[str, int, Any]]:
rng = default_rng()
def create_object(
id_: float, time: float, x: float | None = None, y: float | None = None
) -> Cartesian:
# Create object with random or defined x, y and random velocity
if x is None:
x = rng.uniform(min_x, max_x)
if y is None:
y = rng.uniform(min_y, max_y)
speed = rng.uniform(min_speed, max_speed)
angle = rng.uniform(-np.pi, np.pi)
x_vel, y_vel = speed * np.cos(angle), speed * np.sin(angle)
# Set update time for when out of bounds, or max interval
for dt in range(1, max_update_interval + 1):
if not (0 < x + x_vel * dt < max_x and 0 < y + y_vel * dt < max_y):
out_of_bounds = True
update_time = time + dt
break
else:
out_of_bounds = False
update_time = time + max_update_interval
return Cartesian(id_, time, x, y, x_vel, y_vel, update_time, out_of_bounds)
objects = list()
objects_to_update = defaultdict(set)
for id_ in range(dataset_size):
object_ = create_object(id_, 0)
objects.append(object_)
objects_to_update[object_.update_time].add(object_)
yield "INSERT", 0, object_
for t_now in range(1, simulation_length):
need_to_update = ceil(dataset_size * agility)
updated_ids = set()
while need_to_update > 0 or objects_to_update[t_now]:
kill = False
if objects_to_update[t_now]:
object_ = objects_to_update[t_now].pop()
if object_ not in objects:
continue
kill = object_.out_of_bounds
else:
id_ = rng.integers(0, dataset_size)
while id_ in updated_ids:
id_ = rng.integers(0, dataset_size)
object_ = objects[id_]
updated_ids.add(object_.id)
need_to_update -= 1
yield "DELETE", t_now, object_
if kill:
x = y = None
else:
x, y = object_.getXY(t_now)
object_ = create_object(object_.id, t_now, x, y)
objects[object_.id] = object_
objects_to_update[object_.update_time].add(object_)
yield "INSERT", t_now, object_
for _ in range(queries_per_time_step):
x = rng.uniform(min_x, max_x)
y = rng.uniform(min_y, max_y)
dx = rng.uniform(min_query_extent, max_query_extent)
dy = rng.uniform(min_query_extent, max_query_extent)
dt = rng.integers(min_query_interval, max_query_interval + 1)
t = rng.integers(t_now, t_now + horizon - dt)
yield "QUERY", t_now, QueryCartesian(t, t + dt, x, y, dx, dy)
def intersects(
x1: float, y1: float, x2: float, y2: float, x: float, y: float, dx: float, dy: float
) -> bool:
# Checks if line from x1, y1 to x2, y2 intersects with rectangle with
# bottom left at x-dx, y-dy and top right at x+dx, y+dy.
# Implementation of https://stackoverflow.com/a/293052
# Check if line points not both more/less than max/min for each axis
if (
(x1 > x + dx and x2 > x + dx)
or (x1 < x - dx and x2 < x - dx)
or (y1 > y + dy and y2 > y + dy)
or (y1 < y - dy and y2 < y - dy)
):
return False
# Check on which side (+ve, -ve) of the line the rectangle corners are,
# returning True if any corner is on a different side.
calcs = (
(y2 - y1) * rect_x + (x1 - x2) * rect_y + (x2 * y1 - x1 * y2)
for rect_x, rect_y in (
(x - dx, y - dy),
(x + dx, y - dy),
(x - dx, y + dy),
(x + dx, y + dy),
)
)
sign = np.sign(next(calcs)) # First corner (bottom left)
return any(np.sign(calc) != sign for calc in calcs) # Check remaining 3
class TPRTests(unittest.TestCase):
def test_tpr(self) -> None:
# TODO : this freezes forever on some windows cloud builds
if os.name == "nt":
return
# Cartesians list for brute force
objects = dict()
tpr_tree = Index(properties=Property(type=RT_TPRTree))
for operation, t_now, object_ in data_generator():
if operation == "INSERT":
tpr_tree.insert(object_.id, object_.get_coordinates())
objects[object_.id] = object_
elif operation == "DELETE":
tpr_tree.delete(object_.id, object_.get_coordinates(t_now))
del objects[object_.id]
elif operation == "QUERY":
tree_intersect = set(tpr_tree.intersection(object_.get_coordinates()))
# Brute intersect
brute_intersect = set()
for tree_object in objects.values():
x_low, y_low = tree_object.getXY(object_.start_time)
x_high, y_high = tree_object.getXY(object_.end_time)
if intersects(
x_low,
y_low,
x_high,
y_high, # Line
object_.x,
object_.y,
object_.dx,
object_.dy,
): # Rect
brute_intersect.add(tree_object.id)
# Tree should match brute force approach
assert tree_intersect == brute_intersect
|