1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
.. include:: ../global.inc
.. _decorators.parallel:
.. index::
pair: @parallel; Syntax
.. seealso::
* :ref:`@parallel <new_manual.parallel>` in the **Ruffus** Manual
* :ref:`Decorators <decorators>` for more decorators
########################
@parallel
########################
.. |job_params| replace:: `job_params`
.. _job_params: `decorators.parallel.job_params`_
.. |parameter_generating_function| replace:: `parameter_generating_function`
.. _parameter_generating_function: `decorators.parallel.parameter_generating_function`_
*****************************************************************************************************************************************
*@parallel* ( [ [|job_params|_, ...], [|job_params|_, ...]...] | |parameter_generating_function|_)
*****************************************************************************************************************************************
**Purpose:**
To apply the (task) function to a set of parameters in parallel without file dependency checking.
Most useful allied to :ref:`@check_if_uptodate() <decorators.check_if_uptodate>`
**Example**::
from ruffus import *
parameters = [
['A', 1, 2], # 1st job
['B', 3, 4], # 2nd job
['C', 5, 6], # 3rd job
]
@parallel(parameters)
def parallel_task(name, param1, param2):
sys.stderr.write(" Parallel task %s: " % name)
sys.stderr.write("%d + %d = %d\\n" % (param1, param2, param1 + param2))
pipeline_run([parallel_task])
**Parameters:**
.. _decorators.parallel.job_params:
* *job_params*:
Requires a sequence of parameters, one set for each job.
Each set of parameters can be one or more items in a sequence which will be passed to
the decorated task function iteratively (or in parallel)
For example::
parameters = [
['A', 1, 2], # 1st job
['B', 3, 4], # 2nd job
['C', 5, 6], # 3rd job
]
@parallel(parameters)
def parallel_task(name, param1, param2):
pass
Will result in the following function calls::
parallel_task('A', 1, 2)
parallel_task('B', 3, 4)
parallel_task('C', 5, 6)
.. _decorators.parallel.parameter_generating_function:
* *parameter_generating_function*
#. A generator yielding set of parameters (as above) in turn and on the fly
#. A function returning a sequence of parameter sets, as above
|