1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
##########################################
Implementation Tips
##########################################
******************************************************************************
Release
******************************************************************************
* Change ``ruffus_version.py``
* Rebuild pdf and copy it to ``doc/static_data``
cd doc
make latexpdf
cp _build/latex/ruffus.pdf static_data
* Rebuild documentation::
make htmlsync
* tag git with, for example::
git tag -a v2.6 -m "Version 2.6"
* Upload to pypi::
python setup.py sdist --format=gztar upload
* Upload to repository::
git push googlecode
git push
******************************************************************************
blogger
******************************************************************************
::
.article-content h2 {color: #ad3a2b}
.article-content h3 {color: #0100b4}
#header .header-bar .title h1
{
background-image: url('http://www.ruffus.org.uk/_static/small_logo.png');
background-repeat: no-repeat;
background-position: left;
}
******************************************************************************
dbdict.py
******************************************************************************
This is an sqlite backed dictionary originally written by Jacob Sondergaard and
contributed by Jake Biesinger who added automatic pickling of python objects.
The pickling code was refactored out by Leo Goodstadt into separate functions as
part of the preparation to make Ruffus python3 ready.
Python original saved (pickled) objects as 7 bit ASCII strings. Later formats
(protocol = -1 is the latest format) uses 8 bit strings and are rather more efficient.
These then need to be saved as BLOBs to sqlite3 rather than normal strings. We
can signal this by wrapping the pickled string in a object providing a "buffer interface".
This is ``buffer`` in python2.6/2.7 and ``memoryview`` in python3.
http://bugs.python.org/issue7723 suggests there is no portable python2/3 way to write
blobs to Sqlite without these two incompatible wrappers.
This would require conditional compilation:
.. code-block:: python
if sys.hexversion >= 0x03000000:
value = memoryview(pickle.dumps(value, protocol = -1))
else:
value = buffer(pickle.dumps(value, protocol = -1))
Despite the discussion on the bug report, sqlite3.Binary seems to work.
We shall see if this is portable to python3.
******************************************************************************
how to write new decorators
******************************************************************************
New placeholder class. E.g. for ``@new_deco``
.. code-block:: python
class new_deco(task_decorator):
pass
Add to list of action names and ids:
.. code-block:: python
action_names = ["unspecified",
...
"task_new_deco",
action_task_new_deco = 15
Add function:
.. code-block:: python
def task_transform (self, orig_args):
Add documentation to:
* decorators/NEW_DECORATOR.rst
* decorators/decorators.rst
* _templates/layout.html
* manual
##########################################
Implementation notes
##########################################
N.B. Remember to cite Jake Biesinger and see if he is interested to be a co-author if we ever resubmit the drastically changed version...
He contributed checkpointing, travis and tox etc.
.. _todo.misfeatures:
********************************************************************************************************
``Ctrl-C`` handling
********************************************************************************************************
Pressing ``Ctrl-C`` left dangling process in Ruffus 2.4 because ``KeyboardInterrupt`` does not play nice with python ``multiprocessing.Pool``
See http://stackoverflow.com/questions/1408356/keyboard-interrupts-with-pythons-multiprocessing-pool/1408476#1408476
http://bryceboe.com/2012/02/14/python-multiprocessing-pool-and-keyboardinterrupt-revisited/ provides a reimplementation of Pool which
however only works when you have a fixed number of jobs which should then run in parallel to completion. Ruffus is considerably more
complicated because we have a variable number of jobs completing and being submitted into the job queue at any one time. Think
of tasks stalling waiting for the dependent tasks to complete and then all the jobs of the task being released onto the queue
The solution is
#. Use a ``timeout`` parameter when using ``IMapIterator.next(timeout=None)`` to iterate through ``pool.imap_unordered`` because only timed ``condition`` s can be interruptible by signals...!!
#. This involves rewriting the ``for`` loop manually as a ``while`` loop
#. We use a timeout of ``99999999``, i.e. 3 years, which should be enough for any job to complete...
#. Googling after the fact, it looks like the galaxy guys (cool dudes or what) have written similar `code <https://galaxy-dist.readthedocs.org/en/latest/_modules/galaxy/objectstore/s3_multipart_upload.html>`__
#. ``next()`` for normal iterators do not take ``timeout`` as an extra parameter so we have to wrap next in a conditional :-(. The galaxy guys do a `shim <http://en.wikipedia.org/wiki/Shim_(computing)>`__ around ``next()`` but that is as much obsfucation as a simple if...
#. After jobs are interrupted by a signal, we rethrow with our own exception because we want something that inherits from ``Exception`` unlike ``KeyboardInterrupt``
#. When a signal happens, we need to immediately stop ``feed_job_params_to_process_pool()`` from sending more parameters into the job queue (``parameter_q``)
We use a proxy to a ``multiprocessing.Event`` (via ``syncmanager.Event()``). When ``death_event`` is set, all further processing stops...
#. We also signal that all jobs should finish by putting ``all_tasks_complete()`` into ``parameter_q`` but only ``death_event`` prevents jobs already in the queue from going through
#. Ater signalling, some of the child processes appear to be dead by the time we start cleaning up. ``pool.terminate()`` sometimes tries and fails to
re-connect to the the ``death_event`` proxy via sockets and throws an exception. We should really figure out a better solution but in the meantime
wrapping it in a ``try / except`` allows a clean exit.
#. If a vanilla exception is raised without multiprocessing running, we still need to first save the exception in ``job_errors`` (even if it is just one) before
cleaning up, because the cleaning up process may lead to further (ignored) exceptions which would overwrite the current exception when we need to rethrow it
Exceptions thrown in the middle of a multiprocessing / multithreading job appear to be handled gracefully.
For drmaa jobs, ``qdel`` may still be necessary.
******************************************************************************
Python3 compatability
******************************************************************************
Required extensive changes especially in unit test code.
Changes:
1. ``sort`` in python3 does not order mixed types, i.e. ``int()``, ``list()`` and ``str()`` are incommensurate
* In ``task.get_output_files (...)``, sort after conversion to string
.. code-block:: python
sorted(self.output_filenames, key = lambda x: str(x))
* In ``file_name_parameters.py``: ``collate_param_factory (...)``, ``sort`` after conversion to string, then ``groupby`` without string conversion. This is
because we can't guarantee that two different objects do not have the same string representation. But ``groupby`` requires that similar things are adjacent...
In other words, ``groupby`` is a refinement of ``sorted``
.. code-block:: python
for output_extra_params, grouped_params in groupby(sorted(io_params_iter, key = get_output_extras_str), key = get_output_extras):
pass
2. ``print()`` is a function
.. code-block:: python
from __future__ import print_function
3. ``items()`` only returns a list in python2. Rewrite ``dict.iteritems()`` whenever this might cause a performance bottleneck
4. ``zip`` and ``map`` return iterators. Conditionally import in python2
.. code-block:: python
import sys
if sys.hexversion < 0x03000000:
from future_builtins import zip, map
5. ``cPickle->pickle`` ``CStringIO->io`` need to be conditionally imported
.. code-block:: python
try:
import StringIO as io
except:
import io as io
6. ``map`` code can be changed to list comprehensions. Use ``2to3`` to do heavy lifting
7. All normal strings are unicode in python3. Have to use ``bytes`` to support 8-bit char arrays.
Normally, this means that ``str`` "just works". However, to provide special handling of
both 8-bit and unicode strings in python2, we often need to check for ``isinstance(xxx, basestring)``.
We need to conditionally define:
.. code-block:: python
if sys.hexversion >= 0x03000000:
# everything is unicode in python3
path_str_type = str
else:
path_str_type = basestring
# further down...
if isinstance(compiled_regex, path_str_type):
pass
******************************************************************************
Refactoring: parameter handling
******************************************************************************
Though the code is still split in a not very sensible way between ``ruffus_utility.py``, ``file_name_parameters.py`` and ``task.py``,
some rationalisation has taken place, and comments added so further refactoring can be made more easily.
Common code for::
file_name_parameters.split_ex_param_factory()
file_name_parameters.transform_param_factory()
file_name_parameters.collate_param_factory()
has been moved to ``file_name_parameters.py.yield_io_params_per_job()``
unit tests added to ``test_file_name_parameters.py`` and ``test_ruffus_utility.py``
******************************************************************************
``formatter``
******************************************************************************
``get_all_paths_components(paths, regex_str)`` in ``ruffus_utility.py``
Input files names are first squished into a flat list of files.
``get_all_paths_components()`` returns both the regular expression matches and the break down of the path.
In case of name clashes, the classes with higher priority override:
1) Captures by name
2) Captures by index
3) Path components:
'ext' = extension with dot
'basename' = file name without extension
'path' = path before basename, not ending with slash
'subdir' = list of directories starting with the most nested and ending with the root (if normalised)
'subpath' = list of 'path' with successive directories removed starting with the most nested and ending with the root (if normalised)
E.g. ``name = '/a/b/c/sample1.bam'``, ``formatter=r"(.*)(?P<id>\d+)\.(.+)")`` returns:
.. code-block:: python
0: '/a/b/c/sample1.bam', // Entire match captured by index
1: '/a/b/c/sample', // captured by index
2: 'bam', // captured by index
'id': '1' // captured by name
'ext': '.bam',
'subdir': ['c', 'b', 'a', '/'],
'subpath': ['/a/b/c', '/a/b', '/a', '/'],
'path': '/a/b/c',
'basename': 'sample1',
The code is in ``ruffus_utility.py``:
.. code-block:: python
results = get_all_paths_components(paths, regex_str)
string.format(results[2])
All the magic is hidden inside black boxes ``filename_transform`` classes:
.. code-block:: python
class t_suffix_filename_transform(t_filename_transform):
class t_regex_filename_transform(t_filename_transform):
class t_format_filename_transform(t_filename_transform):
===================================================
``formatter()``: ``regex()`` and ``suffix()``
===================================================
The previous behaviour with regex() where mismatches fail even if no substitution is made is retained by the use of ``re.subn()``.
This is a corner case but I didn't want user code to break
.. code-block:: python
# filter on ".txt"
input_filenames = ["a.wrong", "b.txt"]
regex("(.txt)$")
# fails, no substitution possible
r"\1"
# fails anyway even through regular expression matches not referenced...
r"output.filename"
************************************************************************************************************************************************************
@product()
************************************************************************************************************************************************************
* Use combinatoric generators from itertools and keep that naming scheme
* Put all new generators in an ``combinatorics`` submodule namespace to avoid breaking user code. (They can imported if necessary.)
* test code in test/test_combinatorics.py
* The ``itertools.product(repeat)`` parameter doesn't make sense for Ruffus and will not be used
* Flexible number of pairs of ``task`` / ``glob`` / file names + ``formatter()``
* Only ``formatter([OPTIONAl_REGEX])`` provides the necessary flexibility to construct the output so we won't bother with suffix and regex
* Similar to ``@transform`` but with extra level of nested-ness
Retain same code for ``@product`` and ``@transform`` by adding an additional level of indirection:
* generator wrap around ``get_strings_in_nested_sequence`` to convert nested input parameters either to a single flat list of file names or to nested lists of file names
.. code-block:: python
file_name_parameters.input_param_to_file_name_list (input_params)
file_name_parameters.list_input_param_to_file_name_list (input_params)
* ``t_file_names_transform`` class which stores a list of regular expressions, one for each ``formatter()`` object corresponding to a single set of input parameters
.. code-block:: python
t_formatter_file_names_transform
t_nested_formatter_file_names_transform
* string substitution functions which will apply a list of ``formatter`` changes
.. code-block:: python
ruffus.utility.t_formatter_replace()
ruffus.utility.t_nested_formatter_replace()
* ``ruffus_uilility.swap_doubly_nested_order()`` makes the syntax / implementation very orthogonal
************************************************************************************************************************************************************
``@permutations(...),`` ``@combinations(...),`` ``@combinations_with_replacement(...)``
************************************************************************************************************************************************************
Similar to ``@product`` extra level of nested-ness is self versus self
Retain same code for ``@product``
* forward to a sinble ``file_name_parameters.combinatorics_param_factory()``
* use ``combinatorics_type`` to dispatch to ``combinatorics.permutations``, ``combinatorics.combinations`` and ``combinatorics.combinations_with_replacement``
* use ``list_input_param_to_file_name_list`` from ``file_name_parameters.product_param_factory()``
************************************************************************************************************************************************************
drmaa alternatives
************************************************************************************************************************************************************
Alternative, non-drmaa polling code at
https://github.com/bjpop/rubra/blob/master/rubra/cluster_job.py
************************************************************************************************************************************************************
Task completion monitoring
************************************************************************************************************************************************************
===================================================
How easy is it to abstract out the database?
===================================================
* The database is Jacob Sondergaard's ``dbdict`` which is a nosql / key-value store wrapper around sqlite
.. code-block:: python
job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)
* The key is the output file name, so it is important not to confuse Ruffus by having different tasks generate the same output file!
* Is it possible to abstract this so that **jobs** get timestamped as well?
* If we should ever want to abstract out ``dbdict``, we need to have a similar key-value store class,
and make sure that a single instance of ``dbdict`` is used through ``pipeline_run`` which is passed up
and down the function call chain. ``dbdict`` would then be drop-in replaceable by our custom (e.g. flat-file-based) dbdict alternative.
To peek into the database:
.. code-block:: bash
$ sqlite3 .ruffus_history.sqlite
sqlite> .tables
data
sqlite> .schema data
CREATE TABLE data (key PRIMARY KEY,value);
sqlite> select key from data order by key;
======================================================================================================
Can we query the database, get Job history / stats?
======================================================================================================
Yes, if we write a function to read and dump the entire database but this is only useful with timestamps and task names. See below
======================================================================================================
What are the run time performance implications?
======================================================================================================
Should be fast: a single db connection is created and used inside ``pipeline_run``, ``pipeline_printout``, ``pipeline_printout_graph``
===================================================
Avoid pauses between tasks
===================================================
Allows Ruffus to avoid adding an extra 1 second pause between tasks to guard against file systems with low timestamp granularity.
* If the local file time looks to be in sync with the underlying file system, saved system time is used instead of file timestamps
******************************************************************************************
``@mkdir(...),``
******************************************************************************************
* ``mkdir`` continues to work seamlessly inside ``@follows`` but also as its own decorator ``@mkdir`` due to the original happy orthogonal design
* fixed bug in checking so that Ruffus does't blow up if non strings are in the output (number...)
* note: adding the decorator to a previously undecorated function might have unintended consequences. The undecorated function turns into a zombie.
* fixed ugly bug in ``pipeline_printout`` for printing single line output
* fixed description and printout indent
******************************************************************************
Parameter handling
******************************************************************************
======================================================================================================
Current design
======================================================================================================
Parameters in Ruffus v 2.x are obtained using a "pull" model.
Each task has its self.param_generator_func()
This is an iterator function which yields ``param`` and ``descriptive_param`` per iteration:
.. code-block:: python
for param, descriptive_param in self.param_generator_func(runtime_data):
pass
``param`` and ``descriptive_param`` are basically the same except that globs are not expanded in ``descriptive_param`` because
they are used for display.
The iterator functions have all the state they need to generate their input, output and extra parameters
(only ``runtime_data``) is added at run time.
These closures are generated as nested functions inside "factory" functions defined in ``file_name_parameters.py``
Each task type has its own factory function. For example:
.. code-block:: python
args_param_factory (orig_args)
files_param_factory (input_files_task_globs, flatten_input, do_not_expand_single_job_tasks, output_extras)
split_param_factory (input_files_task_globs, output_files_task_globs, *extra_params)
merge_param_factory (input_files_task_globs, output_param, *extra_params)
originate_param_factory (list_output_files_task_globs, extras)
The following factory files delegate most of their work to ``yield_io_params_per_job``:
to support:
* ``inputs()``, ``add_inputs()`` input parameter supplementing
* extra inputs, outputs, extra parameter replacement with ``suffix()``, ``regex()`` and ``formatter``
.. code-block:: python
collate_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
transform_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
combinatorics_param_factory (input_files_task_globs, flatten_input, combinatorics_type, k_tuple, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
subdivide_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_files_task_globs, *extra_specs)
product_param_factory (list_input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
yield_io_params_per_job (input_params, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, extra_specs, runtime_data, iterator, expand_globs_in_output = False):
#. The first thing they do is to get a list of input parameters, either directly, or by expanding globs or by query upstream tasks:
.. code-block:: python
file_names_from_tasks_globs(files_task_globs, runtime_data, do_not_expand_single_job_tasks = True_if_split_or_merge)
.. note ::
``True_if_split_or_merge`` is a wierd parameter which directly queries the upstream dependency for its output files if it is a single task...
This is legacy code. Probably should be refactored out of existence...
#. They then convert the input parameters to a flattened list of file names (passing through unchanged the original input parameters structure)
.. code-block:: python
input_param_to_file_name_list()
# combinatorics and product call:
list_input_param_to_file_name_list()
This is done at the iterator level because the combinatorics decorators do not have just a
list of input parameters (They have combinations, permutations, products of
input parameters etc) but a list of lists of input parameters.
transform, collate, subdivide => list of strings.
combinatorics / product => list of lists of strings
#. ``yield_io_params_per_job`` yields pairs of param sets by
* Replacing or supplementing input parameters for the indicator objects ``inputs()`` and ``add_inputs()``
* Expanding extra parameters
* Expanding output parameters (with or without expanding globs)
In each case:
* If these contains objects which look like strings, we do regular expression / file component substitution
* If they contain tasks, these are queries for output files
.. note ::
This should be changed:
If the flattened list of input file names is empty, ie. if the input parameters
contain just other stuff, then the entire parameter is ignored.
======================================================================================================
Handling file names
======================================================================================================
All strings in input (or output parameters) are treated as file names unless they are wrapped
with ``output_from`` in which case they are ``Task``, ``Pipeline`` or function names.
A list of strings for ready for substitution to output parameters is obtained from the
``ruffus_utility.get_strings_in_flattened_sequence()``
This is called from:
file_name_parameters
(1) Either to check that input files exist:
``check_input_files_exist()``
``needs_update_check_directory_missing()``
``needs_update_check_exist()``
``needs_update_check_modify_time()``
(2) Or to generate parameters from the various param factories
``product_param_factory()``
``transform_param_factory()``
``collate_param_factory()``
``combinatorics_param_factory()``
``subdivide_param_factory()``
These first call ``file_names_from_tasks_globs()`` to get the input parameters,
then pass a flattened list of strings to ``yield_io_params_per_job()``
-> ``file_names_from_tasks_globs()``
-> ``yield_io_params_per_job(`` ``input_param_to_file_name_list()`` / ``list_input_param_to_file_name_list()`` ``)``
task
(3) to obtain a list of file names to ``touch``
``job_wrapper_io_files``
(4) to make directories
``job_wrapper_mkdir``
(5) update / remove files in ``job_history`` if job succeeded or failed
``pipeline_run``
======================================================================================================
Refactor to handle input parameter objects with ruffus_params() functions
======================================================================================================
We want to expand objects with ruffus_params *only* when doing output parameter
substitution, i.e. Case (2) above. They are not file names: cases (1), (3), (4), (5).
Therefore: Expand in ``file_names_from_tasks_globs()`` which also handles
``inputs()`` and ``add_inputs`` and ``@split`` outputs.
======================================================================================================
Refactor to handle formatter() replacement with "{EXTRAS[0][1][3]}" and "[INPUTS[1][2]]"
======================================================================================================
Non-recursive Substitution in all:
construct new list where each item is replaced referring to the original and then assign
extra_inputs() "[INPUTS[1][2]]" refers to the original input
output / extras "[INPUTS[1][2]]" refers to substituted input
In addition to the flattened input paramters, we need to pass in the unflattened input and extra parameters
In ``file_name_parameters.py.``: ``yield_io_params_per_job``
From:
.. code-block:: python
extra_inputs = extra_input_files_task_globs.file_names_transformed (filenames, file_names_transform)
extra_params = tuple( file_names_transform.substitute(filenames, p) for p in extra_specs)
output_pattern_transformed = output_pattern.file_names_transformed (filenames, file_names_transform)
output_param = file_names_transform.substitute_output_files(filenames, output_pattern)
To:
.. code-block:: python
extra_inputs = extra_input_files_task_globs.file_names_transformed (orig_input_param, extra_specs, filenames, file_names_transform)
extra_params = tuple( file_names_transform.substitute(input_param, extra_specs, filenames, p) for p in extra_specs)
output_pattern_transformed = output_pattern.file_names_transformed (input_param, extra_specs, filenames, file_names_transform)
output_param = file_names_transform.substitute_output_files(input_param, extra_specs, filenames, output_pattern)
In other words, we need two extra parameters for inputs and extras
.. code-block:: python
class t_file_names_transform(object):
def substitute (self, input_param, extra_param, starting_file_names, pattern):
pass
def substitute_output_files (self, input_param, extra_param, starting_file_names, pattern):
pass
class t_params_tasks_globs_run_time_data(object):
def file_names_transformed (self, input_param, extra_param, filenames, file_names_transform):
pass
======================================================================================================
Refactor to handle alternative outputs with either_or(...,...)
======================================================================================================
* what happens to get_outputs or checkpointing when the job completes but the output files are not made?
* either_or matches
* the only alternative to have all files existing
* the alternative with the most recent file
* either_or behaves as ``list()`` in ``file_name_parameters.py.`` : ``file_names_from_tasks_globs``
* Handled to check that input files exist:
``check_input_files_exist()``
``needs_update_check_directory_missing()``
``needs_update_check_exist()``
``needs_update_check_modify_time()``
* Handled to update / remove files in ``job_history`` if job succeeded or failed
* Only first either_or is used to obtain list of file names to ``touch``
``task.job_wrapper_io_files``
* Only first either_or is used to obtain list of file names to make directories
``job_wrapper_mkdir``
* What happens in ``task.get_output_files()``?
******************************************************************************
Add Object Orientated interface
******************************************************************************
======================================================================================================
Passed Unit tests
======================================================================================================
#. Refactored to remove unused "flattened" code paths / parameters
#. Prefix all attributes for Task into underscore so that help(Task) is not overloaded with details
#. Named parameters
* parse named parameters in order filling in from unnamed
* save parameters in ``dict`` ``Task.parsed_args``
* call ``setup_task_func()`` afterwards which knows how to setup:
* poor man's OOP but
* allows type to be changed after constructor:
Because can't guarantee that ``@transform`` ``@merge`` is the first Ruffus decorator to be encountered.
* ``setup_task_func()`` is called for every task before pipeline_xxx()
#. Much more informative messages for errors when parsing decorator arguments
#. Pipeline decorator methods renamed to decorator_xxx as in ``decorator_follows``
#. ``Task.get_task_name()``
* rename to ``Task.get_display_name()``
* distinguish between decorator and OO interface
#. Rename ``_task`` to ``Task``
#. Identifying tasks from t_job_result:
* job results do not contain references to ``Task`` so that it can be marshalled more easily
* we need to look up task at job completion
* use ``_node_index`` from ``graph.py`` so we have always a unique identifier for each ``Task``
#. Parse arguments using ruffus_utility.parse_task_arguments
* Reveals full hackiness and inconsistency between ``add_inputs`` and ``inputs``. The latter only takes a single argument. Each of the elements of the former gets added along side the existing inputs.
#. Add ``Pipeline`` class
* Create global called ``"main"`` (accessed by Pipeline.pipelines["main"])
#. Task name lookup
* Task names are unique (Otherwise Ruffus will complain at Task creation)
* Can also lookup by fully qualified or unqualified function name but these can be ambiguous
* Ambiguous lookups give a list of tasks only so we can have nice diagnostic messages ... UI trumps clean design
#. Look up strings across pipelines
#. Is pipeline name qualified? Check that
#. Check default (current) pipeline
#. Check if pipeline name. In which case returns all tail functions
#. Check all pipelines
* Will blow up at any instance of ambiguity in any particular pipeline
* Will blow up at any instance of ambiguity across pipelines
* Note that mis-spellings will cause problems but if this were c++, I would enforce stricter checking
#. Look up functions across pipelines
* Try current pipeline first, then all pipelines
* Will blow up at any instance of ambiguity in any particular pipeline
* Will blow up at any instance of ambiguity across pipelines (if not in current pipeline)
#. @mkdir, @follows(mkdir)
#. ``Pipeline.get_head_tasks(self)`` (including tasks with mkdir())
#. ``Pipeline.get_tail_tasks(self)``
#. ``Pipeline._complete_task_setup()`` which follows chain of dependencies for each task in a pipeline
======================================================================================================
Pipeline and Task creation
======================================================================================================
* Share code as far as possible between decorator and OOP syntax
* Cannot use textbook OOP inheritance hierarchy easily because @decorators are not necessarily
given in order.
.. <<python
.. code-block:: python
Pipeline.transform
_do_create_task_by_OOP()
@transform
Pipeline._create_task()
task._decorator_transform
task._prepare_transform()
self.setup_task_func = self._transform_setup
parse_task_arguments
Pipeline.run
pipeline._complete_task_setup()
# walk up ancestors of all task and call setup_task_func
unprocessed_tasks = Pipeline.tasks
while len(unprocessed_tasks):
ancestral_tasks = setup_task_func()
if not already processed:
unprocessed_tasks.append(ancestral_tasks)
Call _complete_task_setup() for all the pipelines of each task
..
python
======================================================================================================
Connecting Task into a DAG
======================================================================================================
.. <<python
::
task._complete_setup()
task._remove_all_parents()
task._deferred_connect_parents()
task._setup_task_func()
task._handle_tasks_globs_in_inputs()
task._connect_parents()
# re-lookup task from names in current pipeline so that pipeline.clone() works
..
python
* Task dependencies are normally deferred and saved to ``Task.deferred_follow_params``
* If Task dependencies call for a new Task (``follows``/``follows(mkdir)``), this takes place
immediately
* The parameters in ``Task.deferred_follow_params`` are updated with the created ``Task`` when
this happens
* ``Task._prepare_preceding_mkdir()`` has a ``defer`` flag to prevent it from updating
``Task.deferred_follow_params`` when it is called to resolve deferred dependencies from
``Task._connect_parents()``. Otherwise we will have two copies of each deferred dependency...
* ``Task.deferred_follow_params`` must be deep-copied otherwise cloned pipelines will interfere
with each other when dependencies are resolved...
|