1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
#!/usr/bin/env python
"""
intermediate_example.py
This script takes N pairs of input file pairs
(with the suffices .gene and .gwas)
and runs them against M sets of simulation data
(with the suffix .simulation)
A summary per input file pair is then produced
In pseudo-code:
STEP_1:
for n_file in NNN_pairs_of_input_files:
for m_file in MMM_simulation_data:
[n_file.gene,
n_file.gwas,
m_file.simulation] -> n_file.m_file.simulation_res
STEP_2:
for n_file in NNN_pairs_of_input_files:
n_file.*.simulation_res -> n_file.mean
"""
import os, sys
exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0]
from ruffus import *
from time import sleep
import random
from itertools import izip
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
# options
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
from optparse import OptionParser
parser = OptionParser(version="%prog 1.0")
parser.add_option("-t", "--target_tasks", dest="target_tasks",
action="append",
default = ["statistical_summary"],
metavar="JOBNAME",
type="string",
help="Target task(s) of pipeline.")
parser.add_option("-f", "--forced_tasks", dest="forced_tasks",
action="append",
default = list(),
metavar="JOBNAME",
type="string",
help="Pipeline task(s) which will be included even if they are up to date.")
parser.add_option("-j", "--jobs", dest="jobs",
default=5,
metavar="jobs",
type="int",
help="Specifies the number of jobs (commands) to run simultaneously.")
parser.add_option("-g", "--gene_data_dir", dest="gene_data_dir",
default="%s/data_for_intermediate_example/genes" % exe_path,
metavar="PATH",
type="string",
help="Directory with gene data [*.genes / *.gwas].")
parser.add_option("-s", "--simulation_data_dir", dest="simulation_data_dir",
default="%s/data_for_intermediate_example/simulation" % exe_path,
metavar="PATH",
type="string",
help="Directory with simulation data [*.simulation].")
parser.add_option("-w", "--working_dir", dest="working_dir",
default="/working_dir",
metavar="PATH",
type="string",
help="Working directory.")
parser.add_option("-v", "--verbose", dest = "verbose",
action="store_true", default=False,
help="Do not echo to shell but only print to log.")
parser.add_option("-D", "--dependency", dest="dependency_file",
metavar="FILE",
type="string",
help="Print a dependency graph of the pipeline that would be executed "
"to FILE, but do not execute it.")
parser.add_option("-F", "--dependency_graph_format", dest="dependency_graph_format",
metavar="FORMAT",
type="string",
default = 'svg',
help="format of dependency graph file. Can be 'ps' (PostScript), "+
"'svg' 'svgz' (Structured Vector Graphics), " +
"'png' 'gif' (bitmap graphics) etc ")
parser.add_option("-n", "--just_print", dest="just_print",
action="store_true", default=False,
help="Print a description of the jobs that would be executed, "
"but do not execute them.")
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
# imports
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
import StringIO
import re
import operator
import sys
from collections import defaultdict
import glob
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
# Functions
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
#_________________________________________________________________________________________
#
# get gene gwas file pairs
#
#_________________________________________________________________________________________
def get_gene_gwas_file_pairs( ):
"""
Helper function to get all *.gene, *.gwas from the direction specified
in --gene_data_dir
Returns
file pairs with both .gene and .gwas extensions,
corresponding roots (no extension) of each file
"""
gene_files = glob.glob(os.path.join(options.gene_data_dir, "*.gene"))
gwas_files = glob.glob(os.path.join(options.gene_data_dir, "*.gwas"))
common_roots = set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gene_files))
common_roots &=set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gwas_files))
common_roots = list(common_roots)
p = os.path; g_dir = options.gene_data_dir
file_pairs = [[p.join(g_dir, x + ".gene"), p.join(g_dir, x + ".gwas")] for x in common_roots]
return file_pairs, common_roots
#_________________________________________________________________________________________
#
# get simulation files
#
#_________________________________________________________________________________________
def get_simulation_files( ):
"""
Helper function to get all *.simulation from the direction specified
in --simulation_data_dir
Returns
file with .simulation extensions,
corresponding roots (no extension) of each file
"""
simulation_files = glob.glob(os.path.join(options.simulation_data_dir, "*.simulation"))
simulation_roots =map(lambda x: os.path.splitext(os.path.split(x)[1])[0], simulation_files)
return simulation_files, simulation_roots
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
# Main logic
#88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
# get help string
f =StringIO.StringIO()
parser.print_help(f)
helpstr = f.getvalue()
(options, remaining_args) = parser.parse_args()
working_dir = options.working_dir
#_________________________________________________________________________________________
#
# Step 1:
#
# for n_file in NNN_pairs_of_input_files:
# for m_file in MMM_simulation_data:
#
# [n_file.gene,
# n_file.gwas,
# m_file.simulation] -> working_dir/n_file.m_file.simulation_res
#
#_________________________________________________________________________________________
def generate_simulation_params ():
"""
Custom function to generate
file names for gene/gwas simulation study
"""
simulation_files, simulation_file_roots = get_simulation_files()
gene_gwas_file_pairs, gene_gwas_file_roots = get_gene_gwas_file_pairs()
for sim_file, sim_file_root in izip(simulation_files, simulation_file_roots):
for (gene, gwas), gene_file_root in izip(gene_gwas_file_pairs, gene_gwas_file_roots):
result_file = "%s.%s.simulation_res" % (gene_file_root, sim_file_root)
result_file_path = os.path.join(working_dir, "simulation_results", result_file)
yield [gene, gwas, sim_file], result_file_path, gene_file_root, sim_file_root, result_file
#
# mkdir: makes sure output directories exist before task
#
@follows(mkdir(options.working_dir, os.path.join(working_dir, "simulation_results")))
@files(generate_simulation_params)
def gwas_simulation(input_files, result_file_path, gene_file_root, sim_file_root, result_file):
"""
Dummy calculation of gene gwas vs simulation data
Normally runs in parallel on a computational cluster
"""
(gene_file,
gwas_file,
simulation_data_file) = input_files
simulation_res_file = open(result_file_path, "w")
simulation_res_file.write("%s + %s -> %s\n" % (gene_file_root, sim_file_root, result_file))
#_________________________________________________________________________________________
#
# Step 2:
#
# Statistical summary per gene/gwas file pair
#
# for n_file in NNN_pairs_of_input_files:
# working_dir/simulation_results/n.*.simulation_res
# -> working_dir/n.mean
#
#_________________________________________________________________________________________
def generate_statistical_summary_params():
"""
Custom function to summarising simulation results files per gene / gwas file pair
"""
gene_gwas_file_pairs, gene_gwas_file_roots = get_gene_gwas_file_pairs()
for (gene, gwas), gene_file_root in izip(gene_gwas_file_pairs, gene_gwas_file_roots):
result_glob_spec = "%s.*.simulation_res" % (gene_file_root)
result_files = glob.glob(os.path.join(working_dir, "simulation_results", result_glob_spec))
summary_file = os.path.join(working_dir, gene_file_root + ".mean")
yield result_files, summary_file
@follows(gwas_simulation)
@files(generate_statistical_summary_params)
@posttask(lambda : sys.stdout.write("\nAll finished: hooray!!!\n"))
def statistical_summary (result_files, summary_file):
"""
Simulate statistical summary
"""
summary_file = open(summary_file, "w")
for f in result_files:
summary_file.write(open(f).read())
sleep(1)
#888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
#
# print pipeline or run pipeline
#
if options.just_print:
pipeline_printout(sys.stdout, options.target_tasks, options.forced_tasks, long_winded=True)
elif options.dependency_file:
graph_printout ( open(options.dependency_file, "w"),
options.dependency_graph_format,
options.target_tasks,
options.forced_tasks)
else:
pipeline_run(options.target_tasks, options.forced_tasks, multiprocess = options.jobs)
|