1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
.. include:: ../../global.inc
.. include:: manual_chapter_numbers.inc
.. index::
pair: deprecated @files; Tutorial
.. _new_manual.deprecated_files:
#####################################################################################################################
|new_manual.deprecated_files.chapter_num|: **@files**: Deprecated syntax
#####################################################################################################################
.. warning ::
-
**This is deprecated syntax**
**which is no longer supported and**
**should NOT be used in new code.**
.. seealso::
* :ref:`Manual Table of Contents <new_manual.table_of_contents>`
* :ref:`decorators <decorators>`
* :ref:`@files <decorators.files>` syntax in detail
***************************************
Overview
***************************************
| The python functions which do the actual work of each stage or
:term:`task` of a *Ruffus* pipeline are written by you.
| The role of *Ruffus* is to make sure these functions are called in the right order,
with the right parameters, running in parallel using multiprocessing if desired.
The easiest way to specify parameters to *Ruffus* :term:`task` functions is to use
the :ref:`@files <decorators.files>` decorator.
.. index::
pair: @files; Manual
***************************************
**@files**
***************************************
Running this code:
::
from ruffus import *
@files('a.1', ['a.2', 'b.2'], 'A file')
def single_job_io_task(infile, outfiles, text):
for o in outfiles: open(o, "w")
# prepare input file
open('a.1', "w")
pipeline_run()
Is equivalent to calling:
::
single_job_io_task('a.1', ['a.2', 'b.2'], 'A file')
And produces:
::
>>> pipeline_run()
Job = [a.1 -> [a.2, b.2], A file] completed
Completed Task = single_job_io_task
*Ruffus* will automatically check if your task is up to date. The second time :ref:`pipeline_run() <pipeline_functions.pipeline_run>`
is called, nothing will happen. But if you update ``a.1``, the task will rerun:
::
>>> open('a.1', "w")
>>> pipeline_run()
Job = [a.1 -> [a.2, b.2], A file] completed
Completed Task = single_job_io_task
See :ref:`chapter 2 <new_manual.skip_up_to_date.rules>` for a more in-depth discussion of how *Ruffus*
decides which parts of the pipeline are complete and up-to-date.
.. index::
pair: @files; in parallel
.. _new_manual.files.parallel:
******************************************************************************
Running the same code on different parameters in parallel
******************************************************************************
Your pipeline may require the same function to be called multiple times on independent parameters.
In which case, you can supply all the parameters to @files, each will be sent to separate jobs that
may run in parallel if necessary. *Ruffus* will check if each separate :term:`job` is up-to-date using
the *inputs* and *outputs* (first two) parameters (See the :ref:`new_manual.only_rerun_out_of_date` ).
For example, if a sequence
(e.g. a list or tuple) of 5 parameters are passed to **@files**, that indicates
there will also be 5 separate jobs:
::
from ruffus import *
parameters = [
[ 'job1.file' ], # 1st job
[ 'job2.file', 4 ], # 2st job
[ 'job3.file', [3, 2] ], # 3st job
[ 67, [13, 'job4.file'] ], # 4st job
[ 'job5.file' ], # 5st job
]
@files(parameters)
def task_file(*params):
""
| *Ruffus* creates as many jobs as there are elements in ``parameters``.
| In turn, each of these elements consist of series of parameters which will be
passed to each separate job.
Thus the above code is equivalent to calling:
::
task_file('job1.file')
task_file('job2.file', 4)
task_file('job3.file', [3, 2])
task_file(67, [13, 'job4.file'])
task_file('job5.file')
What ``task_file()`` does with these parameters is up to you!
The only constraint on the parameters is that *Ruffus* will treat any first
parameter of each job as the *inputs* and any second as the *output*. Any
strings in the *inputs* or *output* parameters (including those nested in sequences)
will be treated as file names.
Thus, to pick the parameters out of one of the above jobs:
::
task_file(67, [13, 'job4.file'])
| *inputs* == ``67``
| *outputs* == ``[13, 'job4.file']``
|
| The solitary output filename is ``job4.file``
.. index::
pair: @files; check if up to date
.. _new_manual.files.is_uptodate:
.. _new_manual.files.example:
=======================================
Checking if jobs are up to date
=======================================
| Usually we do not want to run all the stages in a pipeline but only where
the input data has changed or is no longer up to date.
| One easy way to do this is to check the modification times for files produced
at each stage of the pipeline.
| Let us first create our starting files ``a.1`` and ``b.1``
| We can then run the following pipeline function to create
* ``a.2`` from ``a.1`` and
* ``b.2`` from ``b.1``
::
# create starting files
open("a.1", "w")
open("b.1", "w")
from ruffus import *
parameters = [
[ 'a.1', 'a.2', 'A file'], # 1st job
[ 'b.1', 'b.2', 'B file'], # 2nd job
]
@files(parameters)
def parallel_io_task(infile, outfile, text):
# copy infile contents to outfile
infile_text = open(infile).read()
f = open(outfile, "w").write(infile_text + "\n" + text)
pipeline_run()
.. ???
This produces the following output:
::
>>> pipeline_run()
Job = [a.1 -> a.2, A file] completed
Job = [b.1 -> b.2, B file] completed
Completed Task = parallel_io_task
| If you called :ref:`pipeline_run() <pipeline_functions.pipeline_run>` again, nothing would happen because the files are up to date:
| ``a.2`` is more recent than ``a.1`` and
| ``b.2`` is more recent than ``b.1``
However, if you subsequently modified ``a.1`` again:
::
open("a.1", "w")
pipeline_run(verbose = 1)
you would see the following::
>>> pipeline_run([parallel_io_task])
Task = parallel_io_task
Job = ["a.1" -> "a.2", "A file"] completed
Job = ["b.1" -> "b.2", "B file"] unnecessary: already up to date
Completed Task = parallel_io_task
The 2nd job is up to date and will be skipped.
|