1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
.. include:: ../../global.inc
.. include:: manual_chapter_numbers.inc
.. role:: raw-html(raw)
:format: html
:raw-html:`<style> .blue {color:blue} </style>`
:raw-html:`<style> .highlight-red {color:red} </style>`
.. role:: highlight-red
.. role:: blue
.. index::
pair: overview; Tutorial
.. _new_manual.introduction:
######################################################################################################
|new_manual.introduction.chapter_num|: An introduction to basic *Ruffus* syntax
######################################################################################################
.. seealso::
* :ref:`Manual Table of Contents <new_manual.table_of_contents>`
************************************
Overview
************************************
.. image:: ../../images/theoretical_pipeline_schematic.png
:scale: 50
Computational pipelines transform your data in stages until the final result is produced.
One easy way to understand pipelines is by imagining your data flowing across a series of
pipes until it reaches its final destination. Even quite complicated processes can be
broken into simple stages. Of course, it helps to visualise the whole process.
*Ruffus* is a way of automating the plumbing in your pipeline: You supply the python functions
which perform the data transformation, and tell *Ruffus* how these pipeline ``task`` functions
are connected up. *Ruffus* will make sure that the right data flows down your pipeline in the
right way at the right time.
.. note::
*Ruffus* refers to each stage of your pipeline as a :term:`task`.
.. _new_manual.introduction.import:
.. index::
single: importing ruffus
****************************
Importing *Ruffus*
****************************
The most convenient way to use *Ruffus* is to import the various names directly:
.. code-block:: python
from ruffus import *
This will allow *Ruffus* terms to be used directly in your code. This is also
the style we have adopted for this manual.
If any of these clash with names in your code, you can use qualified names instead:
::
import ruffus
ruffus.pipeline_printout("...")
*Ruffus* uses only standard python syntax.
There is no need to install anything extra or to have your script "preprocessed" to run
your pipeline.
****************************************************************************************************************
*Ruffus* `decorators <https://docs.python.org/2/glossary.html#term-decorator>`__
****************************************************************************************************************
To let *Ruffus* know that which python functions are part of your pipeline,
they need to be tagged or annotated using
*Ruffus* `decorators <https://docs.python.org/2/glossary.html#term-decorator>`__ .
`Decorators <https://docs.python.org/2/glossary.html#term-decorator>`__ have been part of the Python language since version 2.4.
Common examples from the standard library include `@staticmethod <https://docs.python.org/2/library/functions.html#staticmethod>`__ and
`classmethod <https://docs.python.org/2/library/functions.html#classmethod>`__.
`decorators <https://docs.python.org/2/glossary.html#term-decorator>`__ start with a ``@``
prefix, and take a number of parameters in parenthesis, much like in a function call.
`decorators <https://docs.python.org/2/glossary.html#term-decorator>`__ are placed before a normal python function.
.. image:: ../../images/tutorial_step1_decorator_syntax.png
Multiple decorators can be stacked as necessary in whichever order:
.. code-block:: python
@follows(first_task)
@follows(another_task)
@originate(range(5))
def second_task():
""
*Ruffus* `decorators <https://docs.python.org/2/glossary.html#term-decorator>`__ do not
otherwise alter the underlying function. These can still be called normally.
***************************************
Your first *Ruffus* pipeline
***************************************
==============================================================================
1. Write down the file names
==============================================================================
*Ruffus* is designed for data moving through a computational pipeline as a series of files.
It is also possible to use *Ruffus* pipelines without using intermediate data files but for your
first efforts, it is probably best not to subvert its canonical design.
The first thing when designing a new *Ruffus* pipeline is to sketch out the set of file names for
the pipeline on paper:
.. image:: ../../images/tutorial_ruffus_files.jpg
:scale: 50
Here we have a number of DNA sequence files (``*.fasta``)
#. mapped to a genome (``*.sam``), and
#. compressed (``*.bam``) before being
#. summarised statistically (``*.statistics``)
The first striking thing is that all of the files following the same **consistent naming scheme**.
.. note::
:highlight-red:`The most important part of a Ruffus pipeline is to have a consistent naming scheme for your files.`
This allows you to build sane pipelines.
In this case, each of the files at the same stage share the same file extension, e.g. (``.sam``).
This is usually the simplest and most sensible choice. (We shall see in later chapters
that *Ruffus* supports more complicated naming patterns so long as they are consistent.)
==============================================================================
2. Write the python functions for each stage
==============================================================================
Next, we can sketch out the python functions which do the actual work for the pipeline.
.. note::
#. :highlight-red:`These are normal python functions with the important proviso that`
#. The first parameter contains the **Input** (file names)
#. The second parameter contains the **Output** (file names)
You can otherwise supply as many parameters as is required.
#. :highlight-red:`Each python function should only take a` *Single* **Input** at a time
All the parallelism in your pipeline should be handled by *Ruffus*. Make sure
each function analyses one thing at a time.
*Ruffus* refers to a pipelined function as a :term:`task`.
The code for our three task functions look something like:
.. code-block:: python
:emphasize-lines: 2,4,5
#
# STAGE 1 fasta->sam
#
def map_dna_sequence(input_file, # 1st parameter is Input
output_file): # 2nd parameter is Output
"""
Sketch of real mapping function
We can do the mapping ourselves
or call some other programme:
os.system("stampy %s %s..." % (input_file, output_file))
"""
ii = open(input_file)
oo = open(output_file, "w")
.. code-block:: python
:emphasize-lines: 2
#
# STAGE 2 sam->bam
#
def compress_sam_file(input_file, # Input parameter
output_file): # Output parameter
"""
Sketch of real compression function
"""
ii = open(input_file)
oo = open(output_file, "w")
.. code-block:: python
:emphasize-lines: 2
#
# STAGE 3 bam->statistics
#
def summarise_bam_file(input_file, # Input parameter
output_file, # Output parameter
extra_stats_parameter): # Any number of extra parameters as required
"""
Sketch of real analysis function
"""
ii = open(input_file)
oo = open(output_file, "w")
If we were calling our functions manually, without the benefit of *Ruffus*, we would need
the following sequence of calls:
.. code-block:: python
# STAGE 1
map_dna_sequence("a.fasta", "a.sam")
map_dna_sequence("b.fasta", "b.sam")
map_dna_sequence("c.fasta", "c.sam")
# STAGE 2
compress_sam_file("a.sam", "a.bam")
compress_sam_file("b.sam", "b.bam")
compress_sam_file("c.sam", "c.bam")
# STAGE 3
summarise_bam_file("a.bam", "a.statistics")
summarise_bam_file("b.bam", "b.statistics")
summarise_bam_file("c.bam", "c.statistics")
==============================================================================
3. Link the python functions into a pipeline
==============================================================================
*Ruffus* makes exactly the same function calls on your behalf. However, first, we need to
tell *Ruffus* what the arguments should be for each of the function calls.
* The **Input** is easy: This is either the starting file set (``*.fasta``) or whatever is produced
by the previous stage.
* The **Output** file name is the same as the **Input** but with the appropriate extension.
These are specified using the *Ruffus* :ref:`@transform <decorators.transform>` decorator as follows:
.. code-block:: python
:emphasize-lines: 6-8,17-19,29-31
from ruffus import *
starting_files = ["a.fasta", "b.fasta", "c.fasta"]
#
# STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files
suffix(".fasta"), # suffix = .fasta
".sam") # Output suffix = .sam
def map_dna_sequence(input_file,
output_file):
ii = open(input_file)
oo = open(output_file, "w")
#
# STAGE 2 sam->bam
#
@transform(map_dna_sequence, # Input = previous stage
suffix(".sam"), # suffix = .sam
".bam") # Output suffix = .bam
def compress_sam_file(input_file,
output_file):
ii = open(input_file)
oo = open(output_file, "w")
#
# STAGE 3 bam->statistics
#
@transform(compress_sam_file, # Input = previous stage
suffix(".bam"), # suffix = .bam
".statistics", # Output suffix = .statistics
"use_linear_model") # Extra statistics parameter
def summarise_bam_file(input_file,
output_file,
extra_stats_parameter):
"""
Sketch of real analysis function
"""
ii = open(input_file)
oo = open(output_file, "w")
==============================================================================
4. @transform syntax
==============================================================================
#. | The 1st parameter for :ref:`@transform <decorators.transform>` is the **Input**.
| This is either the set of starting data or the name of the previous pipeline function.
| *Ruffus* *chains* together the stages of a pipeline by linking the **Output** of the previous stage into the **Input** of the next.
#. | The 2nd parameter is the current :ref:`suffix <decorators.suffix>`
| (i.e. our **Input** file extensions of ``".fasta"`` or ``".sam"`` or ``".bam"``)
#. | The 3rd parameter is what we want our **Output** file name to be after :ref:`suffix <decorators.suffix>` string substitution (e.g. ``.fasta - > .sam``).
| This works because we are using a sane naming scheme for our data files.
#. Other parameters can be passed to ``@transform`` and they will be forwarded to our python
pipeline function.
The functions that do the actual work of each stage of the pipeline remain unchanged.
The role of *Ruffus* is to make sure each is called in the right order,
with the right parameters, running in parallel (using multiprocessing if desired).
.. index::
pair: pipeline_run; Tutorial
.. _new_manual.pipeline_run:
==============================================================================
5. Run the pipeline!
==============================================================================
.. note ::
**Key Ruffus Terminology**:
A :term:`task` is an annotated python function which represents a recipe or stage of your pipeline.
A :term:`job` is each time your recipe is applied to a piece of data, i.e. each time *Ruffus* calls your function.
Each **task** or pipeline recipe can thus have many **jobs** each of which can work in parallel on different data.
Now we can run the pipeline with the *Ruffus* function :ref:`pipeline_run<pipeline_functions.pipeline_run>`:
.. code-block:: python
pipeline_run()
This produces three sets of results in parallel, as you might expect:
.. code-block:: pycon
>>> pipeline_run()
Job = [a.fasta -> a.sam] completed
Job = [b.fasta -> b.sam] completed
Job = [c.fasta -> c.sam] completed
Completed Task = map_dna_sequence
Job = [a.sam -> a.bam] completed
Job = [b.sam -> b.bam] completed
Job = [c.sam -> c.bam] completed
Completed Task = compress_sam_file
Job = [a.bam -> a.statistics, use_linear_model] completed
Job = [b.bam -> b.statistics, use_linear_model] completed
Job = [c.bam -> c.statistics, use_linear_model] completed
Completed Task = summarise_bam_file
To work out which functions to call, :ref:`pipeline_run<pipeline_functions.pipeline_run>`
finds the **last** :term:`task` function of your pipeline, then
works out all the other functions this depends on, working backwards up the chain of
dependencies automatically.
We can specify this end point of your pipeline explicitly:
::
>>> pipeline_run(target_tasks = [summarise_bam_file])
This allows us to only run part of the pipeline, for example:
::
>>> pipeline_run(target_tasks = [compress_sam_file])
.. note::
The :ref:`example code <new_manual.introduction.code>` can be copied and pasted into a python
command shell.
|