File: onthefly_code.rst

package info (click to toggle)
python-ruffus 2.6.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 20,828 kB
  • ctags: 2,843
  • sloc: python: 15,745; makefile: 180; sh: 14
file content (328 lines) | stat: -rw-r--r-- 13,714 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
.. include:: ../../global.inc
.. include:: manual_chapter_numbers.inc

.. _new_manual.on_the_fly.code:

############################################################################################################################################################################################################
|new_manual.on_the_fly.chapter_num|: Esoteric: Python Code for Generating parameters on the fly with :ref:`@files<decorators.files_on_the_fly>`
############################################################################################################################################################################################################

.. seealso::

    * :ref:`Manual Table of Contents <new_manual.table_of_contents>`
    * :ref:`@files on-the-fly syntax in detail <decorators.files_on_the_fly>`
    * Back to |new_manual.on_the_fly.chapter_num|: :ref:`Generating parameters on the fly <new_manual.on_the_fly>`

************************************
Introduction
************************************

    | This script takes N pairs of input file pairs (with the suffices .gene and .gwas)
    | and runs them against M sets of simulation data (with the suffix .simulation)
    | A summary per input file pair is then produced


    In pseudo-code:

        STEP_1:

        ::

            for n_file in NNN_pairs_of_input_files:
                for m_file in MMM_simulation_data:

                    [n_file.gene,
                     n_file.gwas,
                     m_file.simulation] -> n_file.m_file.simulation_res


        STEP_2:

        ::

            for n_file in NNN_pairs_of_input_files:

                n_file.*.simulation_res -> n_file.mean


        | n = CNT_GENE_GWAS_FILES
        | m = CNT_SIMULATION_FILES

************************************
Code
************************************
    ::

        from ruffus import *
        import os

        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

        #   constants

        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
        working_dir             = "temp_NxM"
        simulation_data_dir     = os.path.join(working_dir, "simulation")
        gene_data_dir           = os.path.join(working_dir, "gene")
        CNT_GENE_GWAS_FILES     = 2
        CNT_SIMULATION_FILES    = 3



        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

        #   imports

        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
        import os, sys
        from itertools import izip
        import glob
        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

        #   Functions


        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

        #_________________________________________________________________________________________
        #
        #   get gene gwas file pairs
        #
        #_________________________________________________________________________________________
        def get_gene_gwas_file_pairs(  ):
            """
            Helper function to get all *.gene, *.gwas from the direction specified
                in --gene_data_dir

            Returns
                file pairs with both .gene and .gwas extensions,
                corresponding roots (no extension) of each file
            """
            gene_files = glob.glob(os.path.join(gene_data_dir, "*.gene"))
            gwas_files = glob.glob(os.path.join(gene_data_dir, "*.gwas"))
            #
            common_roots = set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gene_files))
            common_roots &=set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gwas_files))
            common_roots = list(common_roots)
            #
            p = os.path; g_dir = gene_data_dir
            file_pairs = [[p.join(g_dir, x + ".gene"), p.join(g_dir, x + ".gwas")] for x in common_roots]
            return file_pairs, common_roots

        #_________________________________________________________________________________________
        #
        #   get simulation files
        #
        #_________________________________________________________________________________________
        def get_simulation_files(  ):
            """
            Helper function to get all *.simulation from the direction specified
                in --simulation_data_dir
                Returns
                    file with .simulation extensions,
                    corresponding roots (no extension) of each file
            """
            simulation_files = glob.glob(os.path.join(simulation_data_dir, "*.simulation"))
            simulation_roots =map(lambda x: os.path.splitext(os.path.split(x)[1])[0], simulation_files)
            return simulation_files, simulation_roots



        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

        #   Main logic


        #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888







        #_________________________________________________________________________________________
        #
        #   setup_simulation_data
        #
        #_________________________________________________________________________________________

        #
        # mkdir: makes sure output directories exist before task
        #
        @follows(mkdir(gene_data_dir, simulation_data_dir))
        def setup_simulation_data ():
            """
            create simulation files
            """
            for i in range(CNT_GENE_GWAS_FILES):
                open(os.path.join(gene_data_dir, "%03d.gene" % i), "w")
                open(os.path.join(gene_data_dir, "%03d.gwas" % i), "w")
            #
            # gene files without corresponding gwas and vice versa
            open(os.path.join(gene_data_dir, "orphan1.gene"), "w")
            open(os.path.join(gene_data_dir, "orphan2.gwas"), "w")
            open(os.path.join(gene_data_dir, "orphan3.gwas"), "w")
            #
            for i in range(CNT_SIMULATION_FILES):
                open(os.path.join(simulation_data_dir, "%03d.simulation" % i), "w")




        #_________________________________________________________________________________________
        #
        #   cleanup_simulation_data
        #
        #_________________________________________________________________________________________
        def try_rmdir (d):
            if os.path.exists(d):
                try:
                    os.rmdir(d)
                except OSError:
                    sys.stderr.write("Warning:\t%s is not empty and will not be removed.\n" % d)



        def cleanup_simulation_data ():
            """
            cleanup files
            """
            sys.stderr.write("Cleanup working directory and simulation files.\n")
            #
            #   cleanup gene and gwas files
            #
            for f in glob.glob(os.path.join(gene_data_dir, "*.gene")):
                os.unlink(f)
            for f in glob.glob(os.path.join(gene_data_dir, "*.gwas")):
                os.unlink(f)
            try_rmdir(gene_data_dir)
            #
            #   cleanup simulation
            #
            for f in glob.glob(os.path.join(simulation_data_dir, "*.simulation")):
                os.unlink(f)
            try_rmdir(simulation_data_dir)
            #
            #   cleanup working_dir
            #
            for f in glob.glob(os.path.join(working_dir, "simulation_results", "*.simulation_res")):
                os.unlink(f)
            try_rmdir(os.path.join(working_dir, "simulation_results"))
            #
            for f in glob.glob(os.path.join(working_dir, "*.mean")):
                os.unlink(f)
            try_rmdir(working_dir)


        #_________________________________________________________________________________________
        #
        #   Step 1:
        #
        #        for n_file in NNN_pairs_of_input_files:
        #            for m_file in MMM_simulation_data:
        #
        #                [n_file.gene,
        #                 n_file.gwas,
        #                 m_file.simulation] -> working_dir/n_file.m_file.simulation_res
        #
        #_________________________________________________________________________________________
        def generate_simulation_params ():
            """
            Custom function to generate
            file names for gene/gwas simulation study
            """
            simulation_files, simulation_file_roots    = get_simulation_files()
            gene_gwas_file_pairs, gene_gwas_file_roots =  get_gene_gwas_file_pairs()
            #
            for sim_file, sim_file_root in izip(simulation_files, simulation_file_roots):
                for (gene, gwas), gene_file_root in izip(gene_gwas_file_pairs, gene_gwas_file_roots):
                    #
                    result_file = "%s.%s.simulation_res" % (gene_file_root, sim_file_root)
                    result_file_path = os.path.join(working_dir, "simulation_results", result_file)
                    #
                    yield [gene, gwas, sim_file], result_file_path, gene_file_root, sim_file_root, result_file



        #
        # mkdir: makes sure output directories exist before task
        #
        @follows(mkdir(working_dir, os.path.join(working_dir, "simulation_results")))
        @files(generate_simulation_params)
        def gwas_simulation(input_files, result_file_path, gene_file_root, sim_file_root, result_file):
            """
            Dummy calculation of gene gwas vs simulation data
            Normally runs in parallel on a computational cluster
            """
            (gene_file,
            gwas_file,
            simulation_data_file) = input_files
            #
            simulation_res_file = open(result_file_path, "w")
            simulation_res_file.write("%s + %s -> %s\n" % (gene_file_root, sim_file_root, result_file))


        #_________________________________________________________________________________________
        #
        #   Step 2:
        #
        #       Statistical summary per gene/gwas file pair
        #
        #        for n_file in NNN_pairs_of_input_files:
        #            working_dir/simulation_results/n.*.simulation_res
        #               -> working_dir/n.mean
        #
        #_________________________________________________________________________________________


        @collate(gwas_simulation, regex(r"simulation_results/(\d+).\d+.simulation_res"), r"\1.mean")
        @posttask(lambda : sys.stdout.write("\nOK\n"))
        def statistical_summary (result_files, summary_file):
            """
            Simulate statistical summary
            """
            summary_file = open(summary_file, "w")
            for f in result_files:
                summary_file.write(open(f).read())



        pipeline_run([setup_simulation_data], multiprocess = 5, verbose = 2)
        pipeline_run([statistical_summary], multiprocess = 5, verbose = 2)

        # uncomment to printout flowchar
        #
        # pipeline_printout(sys.stdout, [statistical_summary], verbose=2)
        # graph_printout ("flowchart.jpg", "jpg", [statistical_summary])
        #

        cleanup_simulation_data ()




************************************
Resulting Output
************************************
    ::

        >>> pipeline_run([setup_simulation_data], multiprocess = 5, verbose = 2)
            Make directories [temp_NxM/gene, temp_NxM/simulation] completed
        Completed Task = setup_simulation_data_mkdir_1
            Job completed
        Completed Task = setup_simulation_data


        >>> pipeline_run([statistical_summary], multiprocess = 5, verbose = 2)
            Make directories [temp_NxM, temp_NxM/simulation_results] completed
        Completed Task = gwas_simulation_mkdir_1
            Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/000.simulation] -> temp_NxM/simulation_results/001.000.simulation_res, 001, 000, 001.000.simulation_res] completed
            Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/000.simulation] -> temp_NxM/simulation_results/000.000.simulation_res, 000, 000, 000.000.simulation_res] completed
            Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/001.simulation] -> temp_NxM/simulation_results/001.001.simulation_res, 001, 001, 001.001.simulation_res] completed
            Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/001.simulation] -> temp_NxM/simulation_results/000.001.simulation_res, 000, 001, 000.001.simulation_res] completed
            Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/002.simulation] -> temp_NxM/simulation_results/000.002.simulation_res, 000, 002, 000.002.simulation_res] completed
            Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/002.simulation] -> temp_NxM/simulation_results/001.002.simulation_res, 001, 002, 001.002.simulation_res] completed
        Completed Task = gwas_simulation
            Job = [[temp_NxM/simulation_results/000.000.simulation_res, temp_NxM/simulation_results/000.001.simulation_res, temp_NxM/simulation_results/000.002.simulation_res] -> temp_NxM/000.mean] completed
            Job = [[temp_NxM/simulation_results/001.000.simulation_res, temp_NxM/simulation_results/001.001.simulation_res, temp_NxM/simulation_results/001.002.simulation_res] -> temp_NxM/001.mean] completed