1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
A dictionary-like object with SQLite backend
============================================
Python dictionaries are very efficient objects for fast data access. But when
data is too large to fit in memory, you want to keep data on disk but available
for fast random access.
Here's a dictionary-like object which uses a SQLite database backend for random
access to the dictionary's key-value pairs.
Use it like a standard dictionary, except that you give it a name
(eg.'tempdict'):
import dbdict
d = dbdict.open('tempdict')
d['foo'] = 'bar'
# At this point, the key value pair foo and bar is written to disk.
d['John'] = 'doh!'
d['pi'] = 3.999
d['pi'] = 3.14159 # replaces the previous version of pi
d['pi'] += 1
d.close() # close the database file
You can access your dictionary later on:
d = dbdict.open('tempdict')
del d['foo']
if 'John' in d:
print 'John is in there !'
print d.items()
For efficient inserting/updating a list of key-value pairs, use the update()
method:
d.update([('f1', 'test'), ('f2', 'example')])
d.update({'f1':'test', 'f2':'example'})
d.update(f1='test', f2='example')
Use get() method to most efficiently get a number of items as specified by a
lis of keys:
d.get(['f1', 'f2'])
Use remove() method to most efficiently remove a number of items as specified
by a list of keys:
d.remove(['f1', 'f2'])
There is also an alternative (fully equivalent) way to instanstiate a dbdict
object by the call:
from dbdict import dbdict
d = dbdict('tempdict')
Make a memory-based (ie not filed based) SQLite database by the call:
dbdict(':memory:')
Other special functionality as compared to dict:
d.clear() Clear all items (and free up unused disk space)
d.reindex() Delete and recreate the key index
d.vacuum() Free up unused disk space
d.con Access to the underlying SQLite connection (for advanced use)
Some things to note:
- You can't directly store Python objects. Only numbers, strings and binary
data. Objects need to be serialized first in order to be stored. Use e.g.
pickle, json (or simplejson) or yaml for that purpose.
- Explicit database connection closing using the close() method is not
required. Changes are written on key-value assignment to the dictionary.
The file stays open until the object is destroyed or the close() method is
called.
Original code by Jacob Sondergaard
hg clone ssh://hg@bitbucket.org/nephics/dbdict
Modified to pickle automatically
'''
__version__ = '1.3.1'
import sqlite3
try:
# MutableMapping is new in Python 2.6+
from collections import MutableMapping
except ImportError:
# DictMixin will be (or is?) deprecated in the Python 3.x series
from UserDict import DictMixin as MutableMapping
from os import path
try:
import cPickle as pickle
except ImportError:
import pickle
import itertools
import sys
class DbDict(MutableMapping):
''' DbDict, a dictionary-like object with SQLite back-end '''
def __init__(self, filename, picklevalues=False):
self.picklevalues = picklevalues
if filename == ':memory:' or not path.isfile(filename):
self.con = sqlite3.connect(filename)
self._create_table()
else:
self.con = sqlite3.connect(filename)
#_____________________________________________________________________________________
# Add automatic pickling and unpickling
def pickle_loads (self, value):
"""
pickle.load if specified
"""
if self.picklevalues:
value = pickle.loads(bytes(value))
return value
def pickle_dumps (self, value):
"""
pickle.load if specified
"""
if self.picklevalues:
#
# Protocol = 0 generates ASCII 7 bit strings and is less efficient
# Protocol = -1 generates ASCII 8 bit strings which need to be handled as
# blobs by sqlite3.
#
# Unfortunately, sqlite3 only understands memoryview objects in python3 and
# buffer objects in python2
#
# http://bugs.python.org/issue7723 suggests there is no portable
# python2/3 way to write blobs to Sqlite
#
# However, sqlite3.Binary seems to do the trick
#
# Otherwise, to use protocol -1, we need to use the following code:
#
#if sys.hexversion >= 0x03000000:
# value = memoryview(pickle.dumps(value, protocol = -1))
#else:
# value = buffer(pickle.dumps(value, protocol = -1))
#
value = sqlite3.Binary(pickle.dumps(value, protocol = -1))
return value
#_____________________________________________________________________________________
def _create_table(self):
'''Creates an SQLite table 'data' with the columns 'key' and 'value'
where column 'key' is the table's primary key.
Note: SQLite automatically creates an unique index for the 'key' column.
The index may get fragmented with lots of insertions/updates/deletions
therefore it is recommended to use reindex() when searches becomes
gradually slower.
'''
self.con.execute('create table data (key PRIMARY KEY,value)')
self.con.commit()
def __getitem__(self, key):
'''Return value for specified key'''
row = self.con.execute('select value from data where key=?',
(key, )).fetchone()
if not row:
raise KeyError(key)
return self.pickle_loads(row[0])
def __setitem__(self, key, value):
'''Set value at specified key'''
value = self.pickle_dumps(value)
self.con.execute('insert or replace into data (key, value) '
'values (?,?)', (key, value))
self.con.commit()
def __delitem__(self, key):
'''Delete item (key-value pair) at specified key'''
if key in self:
self.con.execute('delete from data where key=?',(key, ))
self.con.commit()
else:
raise KeyError
def __iter__(self):
'''Return iterator over keys'''
return self._iterquery(self.con.execute('select key from data'),
single_value=True)
def __len__(self):
'''Return the number of stored items'''
cursor = self.con.execute('select count() from data')
return cursor.fetchone()[0]
@staticmethod
def _iterquery(cursor, single_value=False):
'''Return iterator over query result with pre-fetching of items in
set sizes determined by SQLite backend'''
rows = True
while rows:
rows = cursor.fetchmany()
for row in rows:
if single_value:
yield row[0]
else:
yield row
def iterkeys(self):
'''Return iterator of all keys in the database'''
return self.__iter__()
def itervalues(self):
'''Return iterator of all values in the database'''
it = self._iterquery(self.con.execute('select value from data'),
single_value=True)
return iter(self.pickle_loads(x) for x in it)
def iteritems(self):
'''Return iterator of all key-value pairs in the database'''
it = self._iterquery(self.con.execute('select key, value from data'))
return iter( (x[0], self.pickle_loads(x[1])) for x in it)
def keys(self):
'''Return all keys in the database'''
return [row[0]
for row in self.con.execute('select key from data').fetchall()]
def items(self):
'''Return all key-value pairs in the database'''
values = self.con.execute('select key, value from data').fetchall()
return [(x[0], self.pickle_loads(x[1])) for x in values]
def clear(self):
'''Clear the database for all key-value pairs, and free up unsused
disk space.
'''
self.con.execute('drop table data')
self.vacuum()
self._create_table()
def _update(self, items):
'''Perform the SQL query of updating items (list of key-value pairs)'''
items = [(k, self.pickle_dumps(v)) for k,v in items]
self.con.executemany('insert or replace into data (key, value)'
' values (?, ?)', items)
self.con.commit()
def update(self, items=None, **kwds):
'''Updates key-value pairs in the database.
Items (key-value pairs) may be given by keyword assignments or using
the parameter 'items' a dict or list/tuple of items.
'''
if isinstance(items, dict):
self._update(list(items.items()))
elif isinstance(items, list) or isinstance(items, tuple):
self._update(items)
elif items:
# probably a generator
try:
self._update(list(items))
except TypeError:
raise ValueError('Could not interpret value of parameter `items` as a dict, list/tuple or iterator.')
if kwds:
self._update(list(kwds.items()))
def popitem(self):
'''Pop a key-value pair from the database. Returns the next key-value
pair which is then removed from the database.'''
res = self.con.execute('select key, value from data').fetchone()
if res:
key, value = res
else:
raise StopIteration
del self[key]
value = self.pickle_loads(value)
return key, value
def close(self):
'''Close database connection'''
self.con.close()
def vacuum(self):
'''Free unused disk space from the database file.
The operation has no effect if database is in memory.
Note: The operation can take some time to run (around a half second per
megabyte on the Linux box where SQLite is developed) and it can use up
to twice as much temporary disk space as the original file while it is
running.
'''
self.con.execute('vacuum')
self.con.commit()
def get(self, keys):
'''Get item(s) for the specified key or list of keys.
Items will be returned only for those keys that are defined. The
function will pass silently (i.e. not raise an error) if one or more of
the keys is not defined.'''
try:
keys = tuple(keys)
except TypeError:
# probably a single key (ie not an iterable)
keys = (keys,)
values = self.con.execute('select key, value from data where key in '
'%s' % (keys,)).fetchall()
return [(k, self.pickle_loads(v)) for k,v in values]
def remove(self, keys):
'''Removes item(s) for the specified key or list of keys.
The function will pass silently (i.e. not raise an error) if one or more
of the keys is not defined.'''
try:
keys = tuple(keys)
except TypeError:
# probably a single key (ie not an iterable)
keys = (keys,)
self.con.execute('delete from data where key in %s' % (keys,))
self.con.commit()
def reindex(self):
'''Delete and recreate key index.
Use this function if key lookup time becomes slower. This may happen as
the index will become fragmented with lots of
insertions/updates/deletions.'''
self.con.execute('reindex sqlite_autoindex_data_1')
self.con.commit()
def dbdict(filename, picklevalues=False):
'''Open a persistent dictionary for reading and writing.
The filename parameter is the base filename for the underlying
database. If filename is ':memory:' the database is created in
memory.
See the module's __doc__ string for an overview of the interface.
'''
return DbDict(filename, picklevalues)
def open(filename, picklevalues=False):
'''Open a persistent dictionary for reading and writing.
The filename parameter is the base filename for the underlying
database. If filename is ':memory:' the database is created in
memory.
See the module's __doc__ string for an overview of the interface.
'''
return DbDict(filename, picklevalues)
if __name__ == '__main__':
# Perform some tests
d = open(':memory:')
d[1] = 'test'
assert d[1] == 'test'
d[1] += '1'
assert d[1] == 'test1'
try:
assert d[2], 'Lookup did not fail on non-existent key'
except KeyError:
pass
# test len
assert len(d) == 1, 'Failed to count number of items'
# test clear
d.clear()
assert len(d) == 0, 'Database not cleared as expected'
# test with list of items as (key, value) pairs
range10 = list(range(10))
items = [(i, i) for i in range10]
d.update(items)
assert list(d.items()) == items, 'Failed to update using list'
d.clear()
# test with tuple of items as (key, value) pairs
d.update(tuple(items))
assert list(d.items()) == items, 'Failed to update using tuple'
d.clear()
# test with dict
d.update(dict(items))
assert list(d.items()) == items
d.clear()
# test with generator
d.update((i, i) for i in range10)
assert list(d.items()) == items, 'Failed to update using generator'
# check the std. dict methods
assert list(d.keys()) == range10
assert list(d.values()) == range10
assert list(d.items()) == items
#assert list(d.iterkeys()) == range10
#assert list(d.itervalues()) == range10
#assert list(d.iteritems()) == items
# test get
assert d.get(list(range(8,12))) == items[-2:]
# test remove
d.remove(list(range(8,10)))
assert len(d.get(list(range(8,10)))) == 0, 'Items not removed successfully'
d.clear()
# test with key,value pairs as parameters
d.update(foo=1, bar=2)
assert list(d.items()) == [('foo', 1), ('bar', 2)], \
'keyword assignment not successful'
# test popitem
while True:
try:
value = d.popitem()
assert value in [('foo', 1), ('bar', 2)], \
'Popitem not in expected result set'
except StopIteration:
break
# test setdefault
d.setdefault(10, 10)
assert d[10] == 10, 'Failed to set default value'
# test vacuum call (no assert)
d.reindex()
# test vacuum call (no assert, and call has no effect on an in memory db)
d.vacuum()
# test close call (assert is given reading from closed database)
d.close()
# try reading from a closed database
try:
d[1] = 1
raise AssertionError('Database not closed')
except sqlite3.ProgrammingError:
pass
|