1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
#!/usr/bin/env python
"""
Summarizes results of benchmarking.
Usage
=====
Run this script with::
./summarize performance.csv
And that should output::
+------------------------+----------+----------------------+
| Metric over 1 run(s) | Mean | Standard Deviation |
+========================+==========+======================+
| Total Time (seconds) | 1.200 | 0.0 |
+------------------------+----------+----------------------+
| Maximum Memory | 42.3 MiB | 0 Bytes |
+------------------------+----------+----------------------+
| Maximum CPU (percent) | 88.1 | 0.0 |
+------------------------+----------+----------------------+
| Average Memory | 33.9 MiB | 0 Bytes |
+------------------------+----------+----------------------+
| Average CPU (percent) | 30.5 | 0.0 |
+------------------------+----------+----------------------+
The script can also be ran with multiple files:
./summarize performance.csv performance-2.csv
And will have a similar output:
+------------------------+----------+----------------------+
| Metric over 2 run(s) | Mean | Standard Deviation |
+========================+==========+======================+
| Total Time (seconds) | 1.155 | 0.0449999570847 |
+------------------------+----------+----------------------+
| Maximum Memory | 42.5 MiB | 110.0 KiB |
+------------------------+----------+----------------------+
| Maximum CPU (percent) | 94.5 | 6.45 |
+------------------------+----------+----------------------+
| Average Memory | 35.6 MiB | 1.7 MiB |
+------------------------+----------+----------------------+
| Average CPU (percent) | 27.5 | 3.03068181818 |
+------------------------+----------+----------------------+
You can also specify the ``--output-format json`` option to print the
summary as JSON instead of a pretty printed table::
{
"total_time": 72.76999998092651,
"std_dev_average_memory": 0.0,
"std_dev_total_time": 0.0,
"average_memory": 56884518.57534247,
"std_dev_average_cpu": 0.0,
"std_dev_max_memory": 0.0,
"average_cpu": 61.19315068493151,
"max_memory": 58331136.0
}
"""
import argparse
import csv
import json
from math import sqrt
from tabulate import tabulate
def human_readable_size(value):
"""Converts integer values in bytes to human readable values"""
hummanize_suffixes = ('KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB')
base = 1024
bytes_int = float(value)
if bytes_int == 1:
return '1 Byte'
elif bytes_int < base:
return '%d Bytes' % bytes_int
for i, suffix in enumerate(hummanize_suffixes):
unit = base ** (i + 2)
if round((bytes_int / unit) * base) < base:
return f'{(base * bytes_int / unit):.1f} {suffix}'
class Summarizer:
DATA_INDEX_IN_ROW = {'time': 0, 'memory': 1, 'cpu': 2}
def __init__(self):
self.total_files = 0
self._num_rows = 0
self._start_time = None
self._end_time = None
self._totals = {
'time': [],
'average_memory': [],
'average_cpu': [],
'max_memory': [],
'max_cpu': [],
}
self._averages = {
'memory': 0.0,
'cpu': 0.0,
}
self._maximums = {'memory': 0.0, 'cpu': 0.0}
@property
def total_time(self):
return self._average_across_all_files('time')
@property
def max_cpu(self):
return self._average_across_all_files('max_cpu')
@property
def max_memory(self):
return self._average_across_all_files('max_memory')
@property
def average_cpu(self):
return self._average_across_all_files('average_cpu')
@property
def average_memory(self):
return self._average_across_all_files('average_memory')
@property
def std_dev_total_time(self):
return self._standard_deviation_across_all_files('time')
@property
def std_dev_max_cpu(self):
return self._standard_deviation_across_all_files('max_cpu')
@property
def std_dev_max_memory(self):
return self._standard_deviation_across_all_files('max_memory')
@property
def std_dev_average_cpu(self):
return self._standard_deviation_across_all_files('average_cpu')
@property
def std_dev_average_memory(self):
return self._standard_deviation_across_all_files('average_memory')
def _average_across_all_files(self, name):
return sum(self._totals[name]) / len(self._totals[name])
def _standard_deviation_across_all_files(self, name):
mean = self._average_across_all_files(name)
differences = [total - mean for total in self._totals[name]]
sq_differences = [difference**2 for difference in differences]
return sqrt(sum(sq_differences) / len(self._totals[name]))
def summarize_as_table(self):
"""Formats the processed data as pretty printed table.
:return: str of formatted table
"""
h = human_readable_size
table = [
[
'Total Time (seconds)',
f'{self.total_time:.3f}',
self.std_dev_total_time,
],
['Maximum Memory', h(self.max_memory), h(self.std_dev_max_memory)],
[
'Maximum CPU (percent)',
f'{self.max_cpu:.1f}',
self.std_dev_max_cpu,
],
[
'Average Memory',
h(self.average_memory),
h(self.std_dev_average_memory),
],
[
'Average CPU (percent)',
f'{self.average_cpu:.1f}',
self.std_dev_average_cpu,
],
]
return tabulate(
table,
headers=[
f'Metric over {self.total_files} run(s)',
'Mean',
'Standard Deviation',
],
tablefmt="grid",
)
def summarize_as_json(self):
"""Return JSON summary of processed data.
:return: str of formatted JSON
"""
return json.dumps(
{
'total_time': self.total_time,
'std_dev_total_time': self.std_dev_total_time,
'max_memory': self.max_memory,
'std_dev_max_memory': self.std_dev_max_memory,
'average_memory': self.average_memory,
'std_dev_average_memory': self.std_dev_average_memory,
'std_dev_max_cpu': self.std_dev_max_cpu,
'max_cpu': self.max_cpu,
'average_cpu': self.average_cpu,
'std_dev_average_cpu': self.std_dev_average_cpu,
},
indent=2,
)
def process(self, args):
"""Processes the data from the CSV file"""
for benchmark_file in args.benchmark_files:
self.process_individual_file(benchmark_file)
self.total_files += 1
def process_individual_file(self, benchmark_file):
with open(benchmark_file) as f:
reader = csv.reader(f)
# Process each row from the CSV file
row = None
for row in reader:
self._validate_row(row, benchmark_file)
self.process_data_row(row)
self._validate_row(row, benchmark_file)
self._end_time = self._get_time(row)
self._finalize_processed_data_for_file()
def _validate_row(self, row, filename):
if not row:
raise RuntimeError(
f'Row: {row} could not be processed. The CSV file ({filename}) may be '
'empty.'
)
def process_data_row(self, row):
# If the row is the first row collect the start time.
if self._num_rows == 0:
self._start_time = self._get_time(row)
self._num_rows += 1
self.process_data_point(row, 'memory')
self.process_data_point(row, 'cpu')
def process_data_point(self, row, name):
# Determine where in the CSV row the requested data is located.
index = self.DATA_INDEX_IN_ROW[name]
# Get the data point.
data_point = float(row[index])
self._add_to_average(name, data_point)
self._account_for_maximum(name, data_point)
def _finalize_processed_data_for_file(self):
# Add numbers to the total, which keeps track of data over
# all files provided.
self._totals['time'].append(self._end_time - self._start_time)
self._totals['max_cpu'].append(self._maximums['cpu'])
self._totals['max_memory'].append(self._maximums['memory'])
self._totals['average_cpu'].append(
self._averages['cpu'] / self._num_rows
)
self._totals['average_memory'].append(
self._averages['memory'] / self._num_rows
)
# Reset some of the data needed to be tracked for each specific
# file.
self._num_rows = 0
self._maximums = self._maximums.fromkeys(self._maximums, 0.0)
self._averages = self._averages.fromkeys(self._averages, 0.0)
def _get_time(self, row):
return float(row[self.DATA_INDEX_IN_ROW['time']])
def _add_to_average(self, name, data_point):
self._averages[name] += data_point
def _account_for_maximum(self, name, data_point):
if data_point > self._maximums[name]:
self._maximums[name] = data_point
def main():
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
'benchmark_files',
nargs='+',
help=(
'The CSV output file from the benchmark script. If you provide'
'more than one of these files, it will give you the average '
'across all of the files for each metric.'
),
)
parser.add_argument(
'-f',
'--output-format',
default='table',
choices=['table', 'json'],
help=(
'Specify what output format to use for displaying results. '
'By default, a pretty printed table is used, but you can also '
'specify "json" to display pretty printed JSON.'
),
)
args = parser.parse_args()
summarizer = Summarizer()
summarizer.process(args)
if args.output_format == 'table':
result = summarizer.summarize_as_table()
else:
result = summarizer.summarize_as_json()
print(result)
if __name__ == '__main__':
main()
|