1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
|
"""schema is a library for validating Python data structures, such as those
obtained from config-files, forms, external services or command-line
parsing, converted from JSON/YAML (or something else) to Python data-types."""
import inspect
import re
from typing import Any
from typing import Callable
from typing import cast
from typing import Dict
from typing import Generic
from typing import Iterable
from typing import List
from typing import NoReturn
from typing import Sequence
from typing import Set
from typing import Sized
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union
# Use TYPE_CHECKING to determine the correct type hint but avoid runtime import errors
if TYPE_CHECKING:
# Only for type checking purposes, we import the standard ExitStack
from contextlib import ExitStack
else:
try:
from contextlib import ExitStack # Python 3.3 and later
except ImportError:
from contextlib2 import ExitStack # Python 2.x/3.0-3.2 fallback
__version__ = "0.7.7"
__all__ = [
"Schema",
"And",
"Or",
"Regex",
"Optional",
"Use",
"Forbidden",
"Const",
"Literal",
"SchemaError",
"SchemaWrongKeyError",
"SchemaMissingKeyError",
"SchemaForbiddenKeyError",
"SchemaUnexpectedTypeError",
"SchemaOnlyOneAllowedError",
]
class SchemaError(Exception):
"""Error during Schema validation."""
def __init__(
self,
autos: Union[Sequence[Union[str, None]], None],
errors: Union[List, str, None] = None,
):
self.autos = autos if isinstance(autos, List) else [autos]
self.errors = errors if isinstance(errors, List) else [errors]
Exception.__init__(self, self.code)
@property
def code(self) -> str:
"""Remove duplicates in autos and errors list and combine them into a single message."""
def uniq(seq: Iterable[Union[str, None]]) -> List[str]:
"""Utility function to remove duplicates while preserving the order."""
seen: Set[str] = set()
unique_list: List[str] = []
for x in seq:
if x is not None and x not in seen:
seen.add(x)
unique_list.append(x)
return unique_list
data_set = uniq(self.autos)
error_list = uniq(self.errors)
return "\n".join(error_list if error_list else data_set)
class SchemaWrongKeyError(SchemaError):
"""Error Should be raised when an unexpected key is detected within the
data set being."""
pass
class SchemaMissingKeyError(SchemaError):
"""Error should be raised when a mandatory key is not found within the
data set being validated"""
pass
class SchemaOnlyOneAllowedError(SchemaError):
"""Error should be raised when an only_one Or key has multiple matching candidates"""
pass
class SchemaForbiddenKeyError(SchemaError):
"""Error should be raised when a forbidden key is found within the
data set being validated, and its value matches the value that was specified"""
pass
class SchemaUnexpectedTypeError(SchemaError):
"""Error should be raised when a type mismatch is detected within the
data set being validated."""
pass
# Type variable to represent a Schema-like type
TSchema = TypeVar("TSchema", bound="Schema")
class And(Generic[TSchema]):
"""
Utility function to combine validation directives in AND Boolean fashion.
"""
def __init__(
self,
*args: Union[TSchema, Callable[..., Any]],
error: Union[str, None] = None,
ignore_extra_keys: bool = False,
schema: Union[Type[TSchema], None] = None,
) -> None:
self._args: Tuple[Union[TSchema, Callable[..., Any]], ...] = args
self._error: Union[str, None] = error
self._ignore_extra_keys: bool = ignore_extra_keys
self._schema_class: Type[TSchema] = schema if schema is not None else Schema
def __repr__(self) -> str:
return f"{self.__class__.__name__}({', '.join(repr(a) for a in self._args)})"
@property
def args(self) -> Tuple[Union[TSchema, Callable[..., Any]], ...]:
"""The provided parameters"""
return self._args
def validate(self, data: Any, **kwargs: Any) -> Any:
"""
Validate data using defined sub schema/expressions ensuring all
values are valid.
:param data: Data to be validated with sub defined schemas.
:return: Returns validated data.
"""
# Annotate sub_schema with the type returned by _build_schema
for sub_schema in self._build_schemas(): # type: TSchema
data = sub_schema.validate(data, **kwargs)
return data
def _build_schemas(self) -> List[TSchema]:
return [self._build_schema(s) for s in self._args]
def _build_schema(self, arg: Any) -> TSchema:
# Assume self._schema_class(arg, ...) returns an instance of TSchema
return self._schema_class(
arg, error=self._error, ignore_extra_keys=self._ignore_extra_keys
)
class Or(And[TSchema]):
"""Utility function to combine validation directives in a OR Boolean
fashion.
If one wants to make an xor, one can provide only_one=True optional argument
to the constructor of this object. When a validation was performed for an
xor-ish Or instance and one wants to use it another time, one needs to call
reset() to put the match_count back to 0."""
def __init__(
self,
*args: Union[TSchema, Callable[..., Any]],
only_one: bool = False,
**kwargs: Any,
) -> None:
self.only_one: bool = only_one
self.match_count: int = 0
super().__init__(*args, **kwargs)
def reset(self) -> None:
failed: bool = self.match_count > 1 and self.only_one
self.match_count = 0
if failed:
raise SchemaOnlyOneAllowedError(
["There are multiple keys present from the %r condition" % self]
)
def validate(self, data: Any, **kwargs: Any) -> Any:
"""
Validate data using sub defined schema/expressions ensuring at least
one value is valid.
:param data: data to be validated by provided schema.
:return: return validated data if not validation
"""
autos: List[str] = []
errors: List[Union[str, None]] = []
for sub_schema in self._build_schemas():
try:
validation: Any = sub_schema.validate(data, **kwargs)
self.match_count += 1
if self.match_count > 1 and self.only_one:
break
return validation
except SchemaError as _x:
autos += _x.autos
errors += _x.errors
raise SchemaError(
["%r did not validate %r" % (self, data)] + autos,
[self._error.format(data) if self._error else None] + errors,
)
class Regex:
"""
Enables schema.py to validate string using regular expressions.
"""
# Map all flags bits to a more readable description
NAMES = [
"re.ASCII",
"re.DEBUG",
"re.VERBOSE",
"re.UNICODE",
"re.DOTALL",
"re.MULTILINE",
"re.LOCALE",
"re.IGNORECASE",
"re.TEMPLATE",
]
def __init__(
self, pattern_str: str, flags: int = 0, error: Union[str, None] = None
) -> None:
self._pattern_str: str = pattern_str
flags_list = [
Regex.NAMES[i] for i, f in enumerate(f"{flags:09b}") if f != "0"
] # Name for each bit
self._flags_names: str = ", flags=" + "|".join(flags_list) if flags_list else ""
self._pattern: re.Pattern = re.compile(pattern_str, flags=flags)
self._error: Union[str, None] = error
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self._pattern_str!r}{self._flags_names})"
@property
def pattern_str(self) -> str:
"""The pattern string for the represented regular expression"""
return self._pattern_str
def validate(self, data: str, **kwargs: Any) -> str:
"""
Validates data using the defined regex.
:param data: Data to be validated.
:return: Returns validated data.
"""
e = self._error
try:
if self._pattern.search(data):
return data
else:
error_message = (
e.format(data)
if e
else f"{data!r} does not match {self._pattern_str!r}"
)
raise SchemaError(error_message)
except TypeError:
error_message = (
e.format(data) if e else f"{data!r} is not string nor buffer"
)
raise SchemaError(error_message)
class Use:
"""
For more general use cases, you can use the Use class to transform
the data while it is being validated.
"""
def __init__(
self, callable_: Callable[[Any], Any], error: Union[str, None] = None
) -> None:
if not callable(callable_):
raise TypeError(f"Expected a callable, not {callable_!r}")
self._callable: Callable[[Any], Any] = callable_
self._error: Union[str, None] = error
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self._callable!r})"
def validate(self, data: Any, **kwargs: Any) -> Any:
try:
return self._callable(data)
except SchemaError as x:
raise SchemaError(
[None] + x.autos,
[self._error.format(data) if self._error else None] + x.errors,
)
except BaseException as x:
f = _callable_str(self._callable)
raise SchemaError(
"%s(%r) raised %r" % (f, data, x),
self._error.format(data) if self._error else None,
)
COMPARABLE, CALLABLE, VALIDATOR, TYPE, DICT, ITERABLE = range(6)
def _priority(s: Any) -> int:
"""Return priority for a given object."""
if type(s) in (list, tuple, set, frozenset):
return ITERABLE
if isinstance(s, dict):
return DICT
if issubclass(type(s), type):
return TYPE
if isinstance(s, Literal):
return COMPARABLE
if hasattr(s, "validate"):
return VALIDATOR
if callable(s):
return CALLABLE
else:
return COMPARABLE
def _invoke_with_optional_kwargs(f: Callable[..., Any], **kwargs: Any) -> Any:
s = inspect.signature(f)
if len(s.parameters) == 0:
return f()
return f(**kwargs)
class Schema(object):
"""
Entry point of the library, use this class to instantiate validation
schema for the data that will be validated.
"""
def __init__(
self,
schema: Any,
error: Union[str, None] = None,
ignore_extra_keys: bool = False,
name: Union[str, None] = None,
description: Union[str, None] = None,
as_reference: bool = False,
) -> None:
self._schema: Any = schema
self._error: Union[str, None] = error
self._ignore_extra_keys: bool = ignore_extra_keys
self._name: Union[str, None] = name
self._description: Union[str, None] = description
self.as_reference: bool = as_reference
if as_reference and name is None:
raise ValueError("Schema used as reference should have a name")
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self._schema)
@property
def schema(self) -> Any:
return self._schema
@property
def description(self) -> Union[str, None]:
return self._description
@property
def name(self) -> Union[str, None]:
return self._name
@property
def ignore_extra_keys(self) -> bool:
return self._ignore_extra_keys
@staticmethod
def _dict_key_priority(s) -> float:
"""Return priority for a given key object."""
if isinstance(s, Hook):
return _priority(s._schema) - 0.5
if isinstance(s, Optional):
return _priority(s._schema) + 0.5
return _priority(s)
@staticmethod
def _is_optional_type(s: Any) -> bool:
"""Return True if the given key is optional (does not have to be found)"""
return any(isinstance(s, optional_type) for optional_type in [Optional, Hook])
def is_valid(self, data: Any, **kwargs: Dict[str, Any]) -> bool:
"""Return whether the given data has passed all the validations
that were specified in the given schema.
"""
try:
self.validate(data, **kwargs)
except SchemaError:
return False
else:
return True
def _prepend_schema_name(self, message: str) -> str:
"""
If a custom schema name has been defined, prepends it to the error
message that gets raised when a schema error occurs.
"""
if self._name:
message = "{0!r} {1!s}".format(self._name, message)
return message
def validate(self, data: Any, **kwargs: Dict[str, Any]) -> Any:
Schema = self.__class__
s: Any = self._schema
e: Union[str, None] = self._error
i: bool = self._ignore_extra_keys
if isinstance(s, Literal):
s = s.schema
flavor = _priority(s)
if flavor == ITERABLE:
data = Schema(type(s), error=e).validate(data, **kwargs)
o: Or = Or(*s, error=e, schema=Schema, ignore_extra_keys=i)
return type(data)(o.validate(d, **kwargs) for d in data)
if flavor == DICT:
exitstack = ExitStack()
data = Schema(dict, error=e).validate(data, **kwargs)
new: Dict = type(data)() # new - is a dict of the validated values
coverage: Set = set() # matched schema keys
# for each key and value find a schema entry matching them, if any
sorted_skeys = sorted(s, key=self._dict_key_priority)
for skey in sorted_skeys:
if hasattr(skey, "reset"):
exitstack.callback(skey.reset)
with exitstack:
# Evaluate dictionaries last
data_items = sorted(
data.items(), key=lambda value: isinstance(value[1], dict)
)
for key, value in data_items:
for skey in sorted_skeys:
svalue = s[skey]
try:
nkey = Schema(skey, error=e).validate(key, **kwargs)
except SchemaError:
pass
else:
if isinstance(skey, Hook):
# As the content of the value makes little sense for
# keys with a hook, we reverse its meaning:
# we will only call the handler if the value does match
# In the case of the forbidden key hook,
# we will raise the SchemaErrorForbiddenKey exception
# on match, allowing for excluding a key only if its
# value has a certain type, and allowing Forbidden to
# work well in combination with Optional.
try:
nvalue = Schema(svalue, error=e).validate(
value, **kwargs
)
except SchemaError:
continue
skey.handler(nkey, data, e)
else:
try:
nvalue = Schema(
svalue, error=e, ignore_extra_keys=i
).validate(value, **kwargs)
except SchemaError as x:
k = "Key '%s' error:" % nkey
message = self._prepend_schema_name(k)
raise SchemaError(
[message] + x.autos,
[e.format(data) if e else None] + x.errors,
)
else:
new[nkey] = nvalue
coverage.add(skey)
break
required = set(k for k in s if not self._is_optional_type(k))
if not required.issubset(coverage):
missing_keys = required - coverage
s_missing_keys = ", ".join(
repr(k) for k in sorted(missing_keys, key=repr)
)
message = "Missing key%s: %s" % (
_plural_s(missing_keys),
s_missing_keys,
)
message = self._prepend_schema_name(message)
raise SchemaMissingKeyError(message, e.format(data) if e else None)
if not self._ignore_extra_keys and (len(new) != len(data)):
wrong_keys = set(data.keys()) - set(new.keys())
s_wrong_keys = ", ".join(repr(k) for k in sorted(wrong_keys, key=repr))
message = "Wrong key%s %s in %r" % (
_plural_s(wrong_keys),
s_wrong_keys,
data,
)
message = self._prepend_schema_name(message)
raise SchemaWrongKeyError(message, e.format(data) if e else None)
# Apply default-having optionals that haven't been used:
defaults = (
set(k for k in s if isinstance(k, Optional) and hasattr(k, "default"))
- coverage
)
for default in defaults:
new[default.key] = (
_invoke_with_optional_kwargs(default.default, **kwargs)
if callable(default.default)
else default.default
)
return new
if flavor == TYPE:
if isinstance(data, s) and not (isinstance(data, bool) and s == int):
return data
else:
message = "%r should be instance of %r" % (data, s.__name__)
message = self._prepend_schema_name(message)
raise SchemaUnexpectedTypeError(message, e.format(data) if e else None)
if flavor == VALIDATOR:
try:
return s.validate(data, **kwargs)
except SchemaError as x:
raise SchemaError(
[None] + x.autos, [e.format(data) if e else None] + x.errors
)
except BaseException as x:
message = "%r.validate(%r) raised %r" % (s, data, x)
message = self._prepend_schema_name(message)
raise SchemaError(message, e.format(data) if e else None)
if flavor == CALLABLE:
f = _callable_str(s)
try:
if s(data):
return data
except SchemaError as x:
raise SchemaError(
[None] + x.autos, [e.format(data) if e else None] + x.errors
)
except BaseException as x:
message = "%s(%r) raised %r" % (f, data, x)
message = self._prepend_schema_name(message)
raise SchemaError(message, e.format(data) if e else None)
message = "%s(%r) should evaluate to True" % (f, data)
message = self._prepend_schema_name(message)
raise SchemaError(message, e.format(data) if e else None)
if s == data:
return data
else:
message = "%r does not match %r" % (s, data)
message = self._prepend_schema_name(message)
raise SchemaError(message, e.format(data) if e else None)
def json_schema(
self, schema_id: str, use_refs: bool = False, **kwargs: Any
) -> Dict[str, Any]:
"""Generate a draft-07 JSON schema dict representing the Schema.
This method must be called with a schema_id.
:param schema_id: The value of the $id on the main schema
:param use_refs: Enable reusing object references in the resulting JSON schema.
Schemas with references are harder to read by humans, but are a lot smaller when there
is a lot of reuse
"""
seen: Dict[int, Dict[str, Any]] = {}
definitions_by_name: Dict[str, Dict[str, Any]] = {}
def _json_schema(
schema: "Schema",
is_main_schema: bool = True,
description: Union[str, None] = None,
allow_reference: bool = True,
) -> Dict[str, Any]:
def _create_or_use_ref(return_dict: Dict[str, Any]) -> Dict[str, Any]:
"""If not already seen, return the provided part of the schema unchanged.
If already seen, give an id to the already seen dict and return a reference to the previous part
of the schema instead.
"""
if not use_refs or is_main_schema:
return return_schema
hashed = hash(repr(sorted(return_dict.items())))
if hashed not in seen:
seen[hashed] = return_dict
return return_dict
else:
id_str = "#" + str(hashed)
seen[hashed]["$id"] = id_str
return {"$ref": id_str}
def _get_type_name(python_type: Type) -> str:
"""Return the JSON schema name for a Python type"""
if python_type == str:
return "string"
elif python_type == int:
return "integer"
elif python_type == float:
return "number"
elif python_type == bool:
return "boolean"
elif python_type == list:
return "array"
elif python_type == dict:
return "object"
return "string"
def _to_json_type(value: Any) -> Any:
"""Attempt to convert a constant value (for "const" and "default") to a JSON serializable value"""
if value is None or type(value) in (str, int, float, bool, list, dict):
return value
if type(value) in (tuple, set, frozenset):
return list(value)
if isinstance(value, Literal):
return value.schema
return str(value)
def _to_schema(s: Any, ignore_extra_keys: bool) -> Schema:
if not isinstance(s, Schema):
return Schema(s, ignore_extra_keys=ignore_extra_keys)
return s
s: Any = schema.schema
i: bool = schema.ignore_extra_keys
flavor = _priority(s)
return_schema: Dict[str, Any] = {}
return_description: Union[str, None] = description or schema.description
if return_description:
return_schema["description"] = return_description
# Check if we have to create a common definition and use as reference
if allow_reference and schema.as_reference:
# Generate sub schema if not already done
if schema.name not in definitions_by_name:
definitions_by_name[
cast(str, schema.name)
] = {} # Avoid infinite loop
definitions_by_name[cast(str, schema.name)] = _json_schema(
schema, is_main_schema=False, allow_reference=False
)
return_schema["$ref"] = "#/definitions/" + cast(str, schema.name)
else:
if flavor == TYPE:
# Handle type
return_schema["type"] = _get_type_name(s)
elif flavor == ITERABLE:
# Handle arrays or dict schema
return_schema["type"] = "array"
if len(s) == 1:
return_schema["items"] = _json_schema(
_to_schema(s[0], i), is_main_schema=False
)
elif len(s) > 1:
return_schema["items"] = _json_schema(
Schema(Or(*s)), is_main_schema=False
)
elif isinstance(s, Or):
# Handle Or values
# Check if we can use an enum
if all(
priority == COMPARABLE
for priority in [_priority(value) for value in s.args]
):
or_values = [
str(s) if isinstance(s, Literal) else s for s in s.args
]
# All values are simple, can use enum or const
if len(or_values) == 1:
return_schema["const"] = _to_json_type(or_values[0])
return return_schema
return_schema["enum"] = or_values
else:
# No enum, let's go with recursive calls
any_of_values = []
for or_key in s.args:
new_value = _json_schema(
_to_schema(or_key, i), is_main_schema=False
)
if new_value != {} and new_value not in any_of_values:
any_of_values.append(new_value)
if len(any_of_values) == 1:
# Only one representable condition remains, do not put under anyOf
return_schema.update(any_of_values[0])
else:
return_schema["anyOf"] = any_of_values
elif isinstance(s, And):
# Handle And values
all_of_values = []
for and_key in s.args:
new_value = _json_schema(
_to_schema(and_key, i), is_main_schema=False
)
if new_value != {} and new_value not in all_of_values:
all_of_values.append(new_value)
if len(all_of_values) == 1:
# Only one representable condition remains, do not put under allOf
return_schema.update(all_of_values[0])
else:
return_schema["allOf"] = all_of_values
elif flavor == COMPARABLE:
return_schema["const"] = _to_json_type(s)
elif flavor == VALIDATOR and type(s) == Regex:
return_schema["type"] = "string"
return_schema["pattern"] = s.pattern_str
else:
if flavor != DICT:
# If not handled, do not check
return return_schema
# Schema is a dict
required_keys = []
expanded_schema = {}
additional_properties = i
for key in s:
if isinstance(key, Hook):
continue
def _key_allows_additional_properties(key: Any) -> bool:
"""Check if a key is broad enough to allow additional properties"""
if isinstance(key, Optional):
return _key_allows_additional_properties(key.schema)
return key == str or key == object
def _get_key_description(key: Any) -> Union[str, None]:
"""Get the description associated to a key (as specified in a Literal object). Return None if not a Literal"""
if isinstance(key, Optional):
return _get_key_description(key.schema)
if isinstance(key, Literal):
return key.description
return None
def _get_key_name(key: Any) -> Any:
"""Get the name of a key (as specified in a Literal object). Return the key unchanged if not a Literal"""
if isinstance(key, Optional):
return _get_key_name(key.schema)
if isinstance(key, Literal):
return key.schema
return key
additional_properties = (
additional_properties
or _key_allows_additional_properties(key)
)
sub_schema = _to_schema(s[key], ignore_extra_keys=i)
key_name = _get_key_name(key)
if isinstance(key_name, str):
if not isinstance(key, Optional):
required_keys.append(key_name)
expanded_schema[key_name] = _json_schema(
sub_schema,
is_main_schema=False,
description=_get_key_description(key),
)
if isinstance(key, Optional) and hasattr(key, "default"):
expanded_schema[key_name]["default"] = _to_json_type(
_invoke_with_optional_kwargs(key.default, **kwargs)
if callable(key.default)
else key.default
)
elif isinstance(key_name, Or):
# JSON schema does not support having a key named one name or another, so we just add both options
# This is less strict because we cannot enforce that one or the other is required
for or_key in key_name.args:
expanded_schema[_get_key_name(or_key)] = _json_schema(
sub_schema,
is_main_schema=False,
description=_get_key_description(or_key),
)
return_schema.update(
{
"type": "object",
"properties": expanded_schema,
"required": required_keys,
"additionalProperties": additional_properties,
}
)
if is_main_schema:
return_schema.update(
{
"$id": schema_id,
"$schema": "http://json-schema.org/draft-07/schema#",
}
)
if self._name:
return_schema["title"] = self._name
if definitions_by_name:
return_schema["definitions"] = {}
for definition_name, definition in definitions_by_name.items():
return_schema["definitions"][definition_name] = definition
return _create_or_use_ref(return_schema)
return _json_schema(self, True)
class Optional(Schema):
"""Marker for an optional part of the validation Schema."""
_MARKER = object()
def __init__(self, *args: Any, **kwargs: Any) -> None:
default: Any = kwargs.pop("default", self._MARKER)
super(Optional, self).__init__(*args, **kwargs)
if default is not self._MARKER:
if _priority(self._schema) != COMPARABLE:
raise TypeError(
"Optional keys with defaults must have simple, "
"predictable values, like literal strings or ints. "
f'"{self._schema!r}" is too complex.'
)
self.default = default
self.key = str(self._schema)
def __hash__(self) -> int:
return hash(self._schema)
def __eq__(self, other: Any) -> bool:
return (
self.__class__ is other.__class__
and getattr(self, "default", self._MARKER)
== getattr(other, "default", self._MARKER)
and self._schema == other._schema
)
def reset(self) -> None:
if hasattr(self._schema, "reset"):
self._schema.reset()
class Hook(Schema):
def __init__(self, *args: Any, **kwargs: Any) -> None:
self.handler: Callable[..., Any] = kwargs.pop("handler", lambda *args: None)
super(Hook, self).__init__(*args, **kwargs)
self.key = self._schema
class Forbidden(Hook):
def __init__(self, *args: Any, **kwargs: Any) -> None:
kwargs["handler"] = self._default_function
super(Forbidden, self).__init__(*args, **kwargs)
@staticmethod
def _default_function(nkey: Any, data: Any, error: Any) -> NoReturn:
raise SchemaForbiddenKeyError(
f"Forbidden key encountered: {nkey!r} in {data!r}", error
)
class Literal:
def __init__(self, value: Any, description: Union[str, None] = None) -> None:
self._schema: Any = value
self._description: Union[str, None] = description
def __str__(self) -> str:
return str(self._schema)
def __repr__(self) -> str:
return f'Literal("{self._schema}", description="{self._description or ""}")'
@property
def description(self) -> Union[str, None]:
return self._description
@property
def schema(self) -> Any:
return self._schema
class Const(Schema):
def validate(self, data: Any, **kwargs: Any) -> Any:
super(Const, self).validate(data, **kwargs)
return data
def _callable_str(callable_: Callable[..., Any]) -> str:
if hasattr(callable_, "__name__"):
return callable_.__name__
return str(callable_)
def _plural_s(sized: Sized) -> str:
return "s" if len(sized) > 1 else ""
|