1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
# Implementation of Scientific.Geometry.Vector in Pyrex
#
# Written by Konrad Hinsen
# last revision: 2008-8-27
#
cdef extern from "math.h":
double sqrt(double x)
double acos(double x)
from Scientific import N
#
# For efficiency reasons (calling __init__ makes the creation of a vector
# rather expensive), most of the operations happen in class "vector", which
# is not meant to be used directly in application code. Objects of this
# class are initialized with zero values and then initialized explicitly
# by calling the method "set".
# Application code should use the derived class "Vector", which adds
# only the __init__ method.
#
cdef class vector:
cdef double xv, yv, zv
property is_vector:
def __get__(self):
return 1
property array:
def __get__(self):
return N.array([self.xv, self.yv, self.zv])
# __array_priority__ and __array_wrap__ are needed to permit
# multiplication with numpy scalar types.
property __array_priority__:
def __get__(self):
return 10.0
def __array_wrap__(self, array):
result = vector()
vector.set(result, array[0], array[1], array[2])
return result
def __copy__(self, memo = None):
return self
def __deepcopy__(self, memo = None):
return self
def __getstate__(self):
return [self.xv, self.yv, self.zv]
def __setstate__(self, state):
self.xv, self.yv, self.zv = state
def __reduce__(self):
return (Vector, (self.xv, self.yv, self.zv))
cdef void set(self, double x, double y, double z):
self.xv = x
self.yv = y
self.zv = z
def x(self):
"Returns the x coordinate."
return self.xv
def y(self):
"Returns the y coordinate."
return self.yv
def z(self):
"Returns the z coordinate."
return self.zv
def __repr__(self):
return 'Vector(%f,%f,%f)' % (self.xv, self.yv, self.zv)
def __str__(self):
return str([self.xv, self.yv, self.zv])
def __add__(vector self, vector other):
result = vector()
vector.set(result,
self.xv+other.xv, self.yv+other.yv, self.zv+other.zv)
return result
def __neg__(vector self):
result = vector()
vector.set(result, -self.xv, -self.yv, -self.zv)
return result
def __sub__(vector self, vector other):
result = vector()
vector.set(result,
self.xv-other.xv, self.yv-other.yv, self.zv-other.zv)
return result
def __mul__(x, y):
cdef vector v1, v2
cdef int rmul
from Scientific import Geometry
rmul = 0
if isinstance(y, vector):
if isinstance(x, vector):
v1 = x
v2 = y
return v1.xv*v2.xv+v1.yv*v2.yv+v1.zv*v2.zv
else:
x, y = y, x
rmul = 1
if Geometry.isTensor(y):
if rmul:
product = y.dot(Geometry.Tensor(x.array, 1))
else:
product = Geometry.Tensor(x.array, 1).dot(y)
if product.rank == 1:
result = vector()
vector.set(result, product.array[0],
product.array[1], product.array[2])
return result
else:
return product
elif hasattr(y, "_product_with_vector"):
return y._product_with_vector(self)
else:
v1 = x
result = vector()
vector.set(result, v1.xv*y, v1.yv*y, v1.zv*y)
return result
def __div__(vector self, double factor):
result = vector()
vector.set(result, self.xv/factor, self.yv/factor, self.zv/factor)
return result
def __richcmp__(vector self, other, int op):
if op != 2 and op != 3:
return NotImplemented
if isinstance(other, vector):
eq = self.xv == other.x() and self.yv == other.y() \
and self.zv == other.z()
else:
eq = False
if op == 2:
return eq
else:
return not eq
def __len__(self):
return 3
def __getitem__(self, int index):
if index == 0 or index == -3:
return self.xv
elif index == 1 or index == -2:
return self.yv
elif index == 2 or index == -1:
return self.zv
raise IndexError
def length(self):
"Returns the length (norm)."
return sqrt(self.xv*self.xv+self.yv*self.yv+self.zv*self.zv)
def normal(self):
"Returns a normalized copy."
cdef double len
len = sqrt(self.xv*self.xv+self.yv*self.yv+self.zv*self.zv)
if len == 0:
raise ZeroDivisionError, "Can't normalize a zero-length vector"
result = vector()
vector.set(result, self.xv/len, self.yv/len, self.zv/len)
return result
def cross(vector self, vector other):
"Returns the cross product with vector |other|."
result = vector()
vector.set(result, self.yv*other.zv-self.zv*other.yv,
self.zv*other.xv-self.xv*other.zv,
self.xv*other.yv-self.yv*other.xv)
return result
def angle(vector self, vector other):
"Returns the angle to vector |other|."
cdef double cosa
cosa = (self.xv*other.xv+self.yv*other.yv+self.zv*other.zv) / \
sqrt((self.xv*self.xv+self.yv*self.yv+self.zv*self.zv)*
(other.xv*other.xv+other.yv*other.yv+other.zv*other.zv))
if cosa > 1.:
cosa = 1.
if cosa < -1.:
cosa = -1.
return acos(cosa)
def asTensor(self):
"Returns an equivalent tensor object of rank 1."
from Scientific import Geometry
return Geometry.Tensor(self.array, 1)
def dyadicProduct(self, other):
"Returns the dyadic product with vector or tensor |other|."
from Scientific import Geometry
if isinstance(other, vector):
return Geometry.Tensor(self.array[:, N.NewAxis]
* other.array[N.NewAxis, :], 1)
elif Geometry.isTensor(other):
return Geometry.Tensor(self.array, 1)*other
else:
raise TypeError, "Dyadic product with non-vector"
cdef class Vector(vector):
property __safe_for_unpickling__:
def __get__(self):
return 1
def __init__(self, x=None, y=None, z=None):
if x is None:
pass # values are pre-initialized to zero
elif y is None and z is None:
self.xv, self.yv, self.zv = x
else:
self.xv = x
self.yv = y
self.zv = z
#
# For compatibility reasons, this routine works like its predecessor
# by testing the attribute is_vector. However, isinstance() works
# as well and is probably more efficient.
#
def isVector(x):
try:
return x.is_vector
except AttributeError:
return 0
|