File: cusolver_demo_DnZheevj.py

package info (click to toggle)
python-scikit-cuda 0.5.3-1
  • links: PTS
  • area: contrib
  • in suites: forky, trixie
  • size: 1,516 kB
  • sloc: python: 18,940; ansic: 459; makefile: 95; sh: 9
file content (54 lines) | stat: -rw-r--r-- 1,640 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python

"""
Demo of how to call low-level CUSOLVER wrappers to perform eigen decomposition
for Hermitian matrices.
"""

import numpy as np
import pycuda.autoinit
import pycuda.gpuarray as gpuarray
import skcuda.cusolver as solver

handle = solver.cusolverDnCreate()
x = np.random.randn(1024,1024)+1j*np.random.rand(1024,1024)
x = x+x.conj().T

# Need to reverse dimensions because CUSOLVER expects column-major matrices:
n, m = x.shape
x_gpu = gpuarray.to_gpu(x.T.copy())

# Set up output buffers:
w = gpuarray.empty(n, dtype = np.double)

# Set up parameters
params = solver.cusolverDnCreateSyevjInfo()
solver.cusolverDnXsyevjSetTolerance(params, 1e-7)
solver.cusolverDnXsyevjSetMaxSweeps(params, 15)

# Set up work buffers:
lwork = solver.cusolverDnZheevj_bufferSize(handle, 'CUSOLVER_EIG_MODE_VECTOR',
                                    'u', n, x_gpu.gpudata, m,
                                    w.gpudata, params)

workspace_gpu = gpuarray.zeros(lwork, dtype = x.dtype)
info = gpuarray.zeros(1, dtype = np.int32)

# Compute:
solver.cusolverDnZheevj(handle, 'CUSOLVER_EIG_MODE_VECTOR',
                       'u', n, x_gpu.gpudata, m,
                        w.gpudata, workspace_gpu.gpudata,
                        lwork, info.gpudata, params)

# Print info
print(solver.cusolverDnXsyevjGetSweeps(handle, params))
print(solver.cusolverDnXsyevjGetResidual(handle, params))

# Destroy handle
solver.cusolverDnDestroySyevjInfo(params)
solver.cusolverDnDestroy(handle)

# Check error
Q = x_gpu.get().T
print('maximum error in A * Q - Q * Lambda is: %r' %
       np.abs(np.dot(x, Q) - np.dot(Q, np.diag(w.get()))).max())