1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
|
#!/usr/bin/env python
"""
Demonstrates how to use the PyCUDA interface to CUFFT to compute a
batch of 2D FFTs.
"""
from __future__ import print_function
import pycuda.autoinit
import pycuda.gpuarray as gpuarray
import numpy as np
import skcuda.fft as cu_fft
print('Testing fft/ifft..')
N = 256
batch_size = 16
x = np.empty((batch_size, N, N), np.float32)
xf = np.empty((batch_size, N, N), np.complex64)
y = np.empty((batch_size, N, N), np.float32)
for i in range(batch_size):
x[i, :, :] = np.asarray(np.random.rand(N, N), np.float32)
xf[i, :, :] = np.fft.fft2(x[i, :, :])
y[i, :, :] = np.real(np.fft.ifft2(xf[i, :, :]))
x_gpu = gpuarray.to_gpu(x)
xf_gpu = gpuarray.empty((batch_size, N, N//2+1), np.complex64)
plan_forward = cu_fft.Plan((N, N), np.float32, np.complex64, batch_size)
cu_fft.fft(x_gpu, xf_gpu, plan_forward)
y_gpu = gpuarray.empty_like(x_gpu)
plan_inverse = cu_fft.Plan((N, N), np.complex64, np.float32, batch_size)
cu_fft.ifft(xf_gpu, y_gpu, plan_inverse, True)
print('Success status: %r' % np.allclose(y, y_gpu.get(), atol=1e-6))
print('Testing in-place fft..')
x = np.empty((batch_size, N, N), np.complex64)
x_gpu = gpuarray.to_gpu(x)
plan = cu_fft.Plan((N, N), np.complex64, np.complex64, batch_size)
cu_fft.fft(x_gpu, x_gpu, plan)
cu_fft.ifft(x_gpu, x_gpu, plan, True)
print('Success status: %r' % np.allclose(x, x_gpu.get(), atol=1e-6))
|