File: mdot_demo.py

package info (click to toggle)
python-scikit-cuda 0.5.3-1
  • links: PTS
  • area: contrib
  • in suites: forky, trixie
  • size: 1,516 kB
  • sloc: python: 18,940; ansic: 459; makefile: 95; sh: 9
file content (39 lines) | stat: -rw-r--r-- 1,300 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/usr/bin/env python

"""
Demonstrates multiplication of several matrices on the GPU.
"""
from __future__ import print_function

import pycuda.gpuarray as gpuarray
import pycuda.driver as drv
import pycuda.autoinit
import numpy as np

import skcuda.linalg as linalg
import skcuda.misc as cumisc
linalg.init()

# Double precision is only supported by devices with compute
# capability >= 1.3:
import string
demo_types = [np.float32, np.complex64]
if cumisc.get_compute_capability(pycuda.autoinit.device) >= 1.3:
    demo_types.extend([np.float64, np.complex128])

for t in demo_types:
    print('Testing multiple matrix multiplication for type ' + str(np.dtype(t)))
    if np.iscomplexobj(t()):
        a = np.asarray(np.random.rand(8, 4) + 1j * np.random.rand(8, 4), t)
        b = np.asarray(np.random.rand(4, 4) + 1j * np.random.rand(4, 4), t)
        c = np.asarray(np.random.rand(4, 4) + 1j * np.random.rand(4, 4), t)
    else:
        a = np.asarray(np.random.rand(8, 4), t)
        b = np.asarray(np.random.rand(4, 4), t)
        c = np.asarray(np.random.rand(4, 4), t)

    a_gpu = gpuarray.to_gpu(a)
    b_gpu = gpuarray.to_gpu(b)
    c_gpu = gpuarray.to_gpu(c)
    d_gpu = linalg.mdot(a_gpu, b_gpu, c_gpu)
    print('Success status: %r' % np.allclose(np.dot(a, np.dot(b, c)), d_gpu.get()))