1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
#!/usr/bin/env python
"""
Demonstrates multiplication of several matrices on the GPU.
"""
from __future__ import print_function
import pycuda.gpuarray as gpuarray
import pycuda.driver as drv
import pycuda.autoinit
import numpy as np
import skcuda.linalg as linalg
import skcuda.misc as cumisc
linalg.init()
# Double precision is only supported by devices with compute
# capability >= 1.3:
import string
demo_types = [np.float32, np.complex64]
if cumisc.get_compute_capability(pycuda.autoinit.device) >= 1.3:
demo_types.extend([np.float64, np.complex128])
for t in demo_types:
print('Testing multiple matrix multiplication for type ' + str(np.dtype(t)))
if np.iscomplexobj(t()):
a = np.asarray(np.random.rand(8, 4) + 1j * np.random.rand(8, 4), t)
b = np.asarray(np.random.rand(4, 4) + 1j * np.random.rand(4, 4), t)
c = np.asarray(np.random.rand(4, 4) + 1j * np.random.rand(4, 4), t)
else:
a = np.asarray(np.random.rand(8, 4), t)
b = np.asarray(np.random.rand(4, 4), t)
c = np.asarray(np.random.rand(4, 4), t)
a_gpu = gpuarray.to_gpu(a)
b_gpu = gpuarray.to_gpu(b)
c_gpu = gpuarray.to_gpu(c)
d_gpu = linalg.mdot(a_gpu, b_gpu, c_gpu)
print('Success status: %r' % np.allclose(np.dot(a, np.dot(b, c)), d_gpu.get()))
|