1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
#!/usr/bin/env python
"""
PyCUDA-based integration functions.
"""
from string import Template
from pycuda.tools import context_dependent_memoize
from pycuda.compiler import SourceModule
import pycuda.elementwise as elementwise
import pycuda.gpuarray as gpuarray
import pycuda.tools as tools
import numpy as np
from .misc import init, shutdown
from . import cublas
from . import misc
def gen_trapz_mult(N, dtype):
"""
Generate multiplication array for 1D trapezoidal integration.
Generates an array whose dot product with some array of equal
length is equivalent to the definite integral of the latter
computed using trapezoidal integration.
Parameters
----------
N : int
Length of array.
dtype : float type
Floating point type to use when generating the array.
Returns
-------
result : pycuda.gpuarray.GPUArray
Generated array.
"""
if dtype not in [np.float32, np.float64, np.complex64,
np.complex128]:
raise ValueError('unrecognized type')
ctype = tools.dtype_to_ctype(dtype)
func = elementwise.ElementwiseKernel("{ctype} *x".format(ctype=ctype),
"x[i] = ((i == 0) || (i == {M})) ? 0.5 : 1".format(M=N-1))
x_gpu = gpuarray.empty(N, dtype)
func(x_gpu)
return x_gpu
def trapz(x_gpu, dx=1.0, handle=None):
"""
1D trapezoidal integration.
Parameters
----------
x_gpu : pycuda.gpuarray.GPUArray
Input array to integrate.
dx : scalar
Spacing.
handle : int
CUBLAS context. If no context is specified, the default handle from
`skcuda.misc._global_cublas_handle` is used.
Returns
-------
result : float
Definite integral as approximated by the trapezoidal rule.
Examples
--------
>>> import pycuda.autoinit
>>> import pycuda.gpuarray
>>> import numpy as np
>>> import integrate
>>> integrate.init()
>>> x = np.asarray(np.random.rand(10), np.float32)
>>> x_gpu = gpuarray.to_gpu(x)
>>> z = integrate.trapz(x_gpu)
>>> np.allclose(np.trapz(x), z)
True
"""
if handle is None:
handle = misc._global_cublas_handle
if len(x_gpu.shape) > 1:
raise ValueError('input array must be 1D')
if np.iscomplex(dx):
raise ValueError('dx must be real')
float_type = x_gpu.dtype.type
if float_type == np.complex64:
cublas_func = cublas.cublasCdotu
elif float_type == np.float32:
cublas_func = cublas.cublasSdot
elif float_type == np.complex128:
cublas_func = cublas.cublasZdotu
elif float_type == np.float64:
cublas_func = cublas.cublasDdot
else:
raise ValueError('unsupported input type')
trapz_mult_gpu = gen_trapz_mult(x_gpu.size, float_type)
result = cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1,
trapz_mult_gpu.gpudata, 1)
return float_type(dx)*result
def gen_simps_mult(N, dtype, even='avg'):
"""
Generate multiplication array for composite Simpson's rule.
Generates an array whose dot product with some array of equal
length is equivalent to the definite integral of the latter
computed using composite Simpson's rule.
If there are an even number of samples, N, then there are an odd
number of intervals (N-1), but Simpson's rule requires an even number
of intervals. The parameter 'even' controls how this is handled.
Parameters
----------
N : int
Length of array.
dtype : float type
Floating point type to use when generating the array.
even : str {'avg', 'first', 'last'}, optional
'avg' : Average two results:1) use the first N-2 intervals with
a trapezoidal rule on the last interval and 2) use the last
N-2 intervals with a trapezoidal rule on the first interval.
'first' : Use Simpson's rule for the first N-2 intervals with
a trapezoidal rule on the last interval.
'last' : Use Simpson's rule for the last N-2 intervals with a
trapezoidal rule on the first interval.
Returns
-------
result : pycuda.gpuarray.GPUArray
Generated array.
"""
if dtype not in [np.float32, np.float64, np.complex64,
np.complex128]:
raise ValueError('unrecognized type')
ctype = tools.dtype_to_ctype(dtype)
x_gpu = gpuarray.zeros(N, dtype)
if N % 2:
func = elementwise.ElementwiseKernel("{ctype} *x".format(ctype=ctype),
"x[i] = (i%2 == 0) ? ((i != 0 && i != {M}) ? 2. : 1.) : 4.".format(M=N-1))
x_gpu.fill(1.)
func(x_gpu)
return x_gpu/3.
else:
if even not in ['avg', 'last', 'first']:
raise ValueError("Parameter 'even' must be "
"'avg', 'last', or 'first'.")
basic_simps = gen_simps_mult(N-1, dtype)
if even in ['avg', 'first']:
x_gpu[:-1] += basic_simps
x_gpu[-2:] += 0.5 # trapz on last interval
if even in ['avg', 'last']:
x_gpu[1:] += basic_simps
x_gpu[:2] += 0.5 # trapz on first interval
if even == 'avg':
x_gpu /= 2.
return x_gpu
def simps(x_gpu, dx=1.0, even='avg', handle=None):
"""
Implementation of composite Simpson's rule similar to
scipy.integrate.simps.
Integrate x_gpu with spacing dx using composite Simpson's rule.
If there are an even number of samples, N, then there are an odd
number of intervals (N-1), but Simpson's rule requires an even number
of intervals. The parameter 'even' controls how this is handled.
Parameters
----------
x_gpu : pycuda.gpuarray.GPUArray
Input array to integrate.
dx : scalar
Spacing.
even : str {'avg', 'first', 'last'}, optional
'avg' : Average two results:1) use the first N-2 intervals with
a trapezoidal rule on the last interval and 2) use the last
N-2 intervals with a trapezoidal rule on the first interval.
'first' : Use Simpson's rule for the first N-2 intervals with
a trapezoidal rule on the last interval.
'last' : Use Simpson's rule for the last N-2 intervals with a
trapezoidal rule on the first interval.
handle : int
CUBLAS context. If no context is specified, the default handle from
`skcuda.misc._global_cublas_handle` is used.
Returns
-------
result : float
Definite integral as approximated by the composite Simpson's rule.
Examples
--------
>>> import pycuda.autoinit
>>> import pycuda.gpuarray
>>> import numpy as np
>>> import integrate
>>> integrate.init()
>>> x_gpu = gpuarray.arange(0,10,dtype=np.float64)
>>> integrate.simps(x_gpu)
40.5
>>> x_gpu**=3
>>> integrate.simps(x_gpu)
1642.5
>>> integrate.simps(x_gpu, even='first')
1644.5
"""
if handle is None:
handle = misc._global_cublas_handle
if len(x_gpu.shape) > 1:
raise ValueError('input array must be 1D')
if np.iscomplex(dx):
raise ValueError('dx must be real')
float_type = x_gpu.dtype.type
if float_type == np.complex64:
cublas_func = cublas.cublasCdotu
elif float_type == np.float32:
cublas_func = cublas.cublasSdot
elif float_type == np.complex128:
cublas_func = cublas.cublasZdotu
elif float_type == np.float64:
cublas_func = cublas.cublasDdot
else:
raise ValueError('unsupported input type')
simps_mult_gpu = gen_simps_mult(x_gpu.size, float_type, even)
result = cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1,
simps_mult_gpu.gpudata, 1)
return float_type(dx)*result
@context_dependent_memoize
def _get_trapz2d_mult_kernel(use_double, use_complex):
template = Template("""
#include <pycuda-complex.hpp>
#if ${use_double}
#if ${use_complex}
#define TYPE pycuda::complex<double>
#else
#define TYPE double
#endif
#else
#if ${use_complex}
#define TYPE pycuda::complex<float>
#else
#define TYPE float
#endif
#endif
// Ny: number of rows
// Nx: number of columns
__global__ void gen_trapz2d_mult(TYPE *mult,
unsigned int Ny, unsigned int Nx) {
unsigned int idx = blockIdx.y*blockDim.x*gridDim.x+
blockIdx.x*blockDim.x+threadIdx.x;
if (idx < Nx*Ny) {
if (idx == 0 || idx == Nx-1 || idx == Nx*(Ny-1) || idx == Nx*Ny-1)
mult[idx] = TYPE(0.25);
else if ((idx > 0 && idx < Nx-1) || (idx % Nx == 0) ||
(((idx + 1) % Nx) == 0) || (idx > Nx*(Ny-1) && idx < Nx*Ny-1))
mult[idx] = TYPE(0.5);
else
mult[idx] = TYPE(1.0);
}
}
""")
# Set this to False when debugging to make sure the compiled kernel is
# not cached:
tmpl = template.substitute(use_double=use_double, use_complex=use_complex)
cache_dir=None
mod = SourceModule(tmpl, cache_dir=cache_dir)
return mod.get_function("gen_trapz2d_mult")
def gen_trapz2d_mult(mat_shape, dtype):
"""
Generate multiplication matrix for 2D trapezoidal integration.
Generates a matrix whose dot product with some other matrix of
equal length (when flattened) is equivalent to the definite double
integral of the latter computed using trapezoidal integration.
Parameters
----------
mat_shape : tuple
Shape of matrix.
dtype : float type
Floating point type to use when generating the array.
Returns
-------
result : pycuda.gpuarray.GPUArray
Generated matrix.
"""
if dtype not in [np.float32, np.float64, np.complex64,
np.complex128]:
raise ValueError('unrecognized type')
use_double = int(dtype in [np.float64, np.complex128])
use_complex = int(dtype in [np.complex64, np.complex128])
# Allocate output matrix:
Ny, Nx = mat_shape
mult_gpu = gpuarray.empty(mat_shape, dtype)
# Get block/grid sizes:
dev = misc.get_current_device()
block_dim, grid_dim = misc.select_block_grid_sizes(dev, mat_shape)
gen_trapz2d_mult = _get_trapz2d_mult_kernel(use_double, use_complex)
gen_trapz2d_mult(mult_gpu, np.uint32(Ny), np.uint32(Nx),
block=block_dim,
grid=grid_dim)
return mult_gpu
def trapz2d(x_gpu, dx=1.0, dy=1.0, handle=None):
"""
2D trapezoidal integration.
Parameters
----------
x_gpu : pycuda.gpuarray.GPUArray
Input matrix to integrate.
dx : float
X-axis spacing.
dy : float
Y-axis spacing
handle : int
CUBLAS context. If no context is specified, the default handle from
`skcuda.misc._global_cublas_handle` is used.
Returns
-------
result : float
Definite double integral as approximated by the trapezoidal rule.
Examples
--------
>>> import pycuda.autoinit
>>> import pycuda.gpuarray
>>> import numpy as np
>>> import integrate
>>> integrate.init()
>>> x = np.asarray(np.random.rand(10, 10), np.float32)
>>> x_gpu = gpuarray.to_gpu(x)
>>> z = integrate.trapz2d(x_gpu)
>>> np.allclose(np.trapz(np.trapz(x)), z)
True
"""
if handle is None:
handle = misc._global_cublas_handle
if len(x_gpu.shape) != 2:
raise ValueError('input array must be 2D')
if np.iscomplex(dx) or np.iscomplex(dy):
raise ValueError('dx and dy must be real')
float_type = x_gpu.dtype.type
if float_type == np.complex64:
cublas_func = cublas.cublasCdotu
elif float_type == np.float32:
cublas_func = cublas.cublasSdot
elif float_type == np.complex128:
cublas_func = cublas.cublasZdotu
elif float_type == np.float64:
cublas_func = cublas.cublasDdot
else:
raise ValueError('unsupported input type')
trapz_mult_gpu = gen_trapz2d_mult(x_gpu.shape, float_type)
result = cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1,
trapz_mult_gpu.gpudata, 1)
return float_type(dx)*float_type(dy)*result
if __name__ == "__main__":
import doctest
doctest.testmod()
|