File: fft.py

package info (click to toggle)
python-scikit-cuda 0.5.3-2
  • links: PTS, VCS
  • area: contrib
  • in suites: sid
  • size: 1,516 kB
  • sloc: python: 18,940; ansic: 459; makefile: 95; sh: 9
file content (310 lines) | stat: -rw-r--r-- 10,214 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python

"""
PyCUDA-based FFT functions.
"""

import pycuda.driver as drv
import pycuda.gpuarray as gpuarray
import pycuda.elementwise as el
from pycuda.tools import context_dependent_memoize
import pycuda.tools as tools
import numpy as np

from . import cufft
from .cufft import CUFFT_COMPATIBILITY_NATIVE, \
     CUFFT_COMPATIBILITY_FFTW_PADDING, \
     CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC, \
     CUFFT_COMPATIBILITY_FFTW_ALL
from . import cudart
from . import misc

class Plan:
    """
    CUFFT plan class.

    This class represents an FFT plan for CUFFT.

    Parameters
    ----------
    shape : tuple of ints
        Transform shape. May contain more than 3 elements.
    in_dtype : { numpy.float32, numpy.float64, numpy.complex64, numpy.complex128 }
        Type of input data.
    out_dtype : { numpy.float32, numpy.float64, numpy.complex64, numpy.complex128 }
        Type of output data.
    batch : int
        Number of FFTs to configure in parallel (default is 1).
    stream : pycuda.driver.Stream
        Stream with which to associate the plan. If no stream is specified,
        the default stream is used.
    mode : int
        FFTW compatibility mode. Ignored in CUDA 9.2 and later.
    inembed : numpy.array with dtype=numpy.int32
        number of elements in each dimension of the input array
    istride : int
        distance between two successive input elements in the least significant
        (innermost) dimension
    idist : int
        distance between the first element of two consective batches in the
        input data
    onembed : numpy.array with dtype=numpy.int32
        number of elements in each dimension of the output array
    ostride : int
        distance between two successive output elements in the least significant
        (innermost) dimension
    odist : int
        distance between the first element of two consective batches in the
        output data
    auto_allocate : bool
        indicates whether the caller intends to allocate and manage the work area
    """

    def __init__(self, shape, in_dtype, out_dtype, batch=1, stream=None,
                 mode=0x01, inembed=None, istride=1, idist=0, onembed=None,
                 ostride=1, odist=0, auto_allocate=True):

        if np.isscalar(shape):
            self.shape = (shape, )
        else:
            self.shape = shape

        self.in_dtype = in_dtype
        self.out_dtype = out_dtype

        if batch <= 0:
            raise ValueError('batch size must be greater than 0')
        self.batch = batch

        # Determine type of transformation:
        if in_dtype == np.float32 and out_dtype == np.complex64:
            self.fft_type = cufft.CUFFT_R2C
            self.fft_func = cufft.cufftExecR2C
        elif in_dtype == np.complex64 and out_dtype == np.float32:
            self.fft_type = cufft.CUFFT_C2R
            self.fft_func = cufft.cufftExecC2R
        elif in_dtype == np.complex64 and out_dtype == np.complex64:
            self.fft_type = cufft.CUFFT_C2C
            self.fft_func = cufft.cufftExecC2C
        elif in_dtype == np.float64 and out_dtype == np.complex128:
            self.fft_type = cufft.CUFFT_D2Z
            self.fft_func = cufft.cufftExecD2Z
        elif in_dtype == np.complex128 and out_dtype == np.float64:
            self.fft_type = cufft.CUFFT_Z2D
            self.fft_func = cufft.cufftExecZ2D
        elif in_dtype == np.complex128 and out_dtype == np.complex128:
            self.fft_type = cufft.CUFFT_Z2Z
            self.fft_func = cufft.cufftExecZ2Z
        else:
            raise ValueError('unsupported input/output type combination')

        # Check for double precision support:
        capability = misc.get_compute_capability(misc.get_current_device())
        if capability < 1.3 and \
           (misc.isdoubletype(in_dtype) or misc.isdoubletype(out_dtype)):
            raise RuntimeError('double precision requires compute capability '
                               '>= 1.3 (you have %g)' % capability)

        if inembed is not None:
            inembed = inembed.ctypes.data
        if onembed is not None:
            onembed = onembed.ctypes.data

        # Set up plan:
        if len(self.shape) <= 0:
            raise ValueError('invalid transform size')
        n = np.asarray(self.shape, np.int32)
        self.handle = cufft.cufftCreate()

        # Set FFTW compatibility mode:
        if cufft._cufft_version <= 9010:
            cufft.cufftSetCompatibilityMode(self.handle, mode)

        # Set auto-allocate mode
        cufft.cufftSetAutoAllocation(self.handle, auto_allocate)
        self.worksize = cufft.cufftMakePlanMany(
            self.handle, len(self.shape), n.ctypes.data, inembed, istride, idist,
            onembed, ostride, odist, self.fft_type, self.batch)

        # Associate stream with plan:
        if stream != None:
            cufft.cufftSetStream(self.handle, stream.handle)

    def set_work_area(self, work_area):
        """
        Associate a caller-managed work area with the plan.

        Parameters
        ----------
        work_area : pycuda.gpuarray.GPUArray
        """
        cufft.cufftSetWorkArea(self.handle, int(work_area.gpudata))

    def __del__(self):

        # Don't complain if handle destruction fails because the plan
        # may have already been cleaned up:
        try:
            cufft.cufftDestroy(self.handle)
        except:
            pass

@context_dependent_memoize
def _get_scale_kernel(dtype):
    ctype = tools.dtype_to_ctype(dtype)
    return el.ElementwiseKernel(
        "{ctype} scale, {ctype} *x".format(ctype=ctype),
        "x[i] /= scale")

def _fft(x_gpu, y_gpu, plan, direction, scale=None):
    """
    Fast Fourier Transform.

    Parameters
    ----------
    x_gpu : pycuda.gpuarray.GPUArray
        Input array.
    y_gpu : pycuda.gpuarray.GPUArray
        Output array.
    plan : Plan
        FFT plan.
    direction : { cufft.CUFFT_FORWARD, cufft.CUFFT_INVERSE }
        Transform direction. Only affects in-place transforms.

    Optional Parameters
    -------------------
    scale : int or float
        Scale the values in the output array by dividing them by this value.

    Notes
    -----
    This function should not be called directly.
    """

    if (x_gpu.gpudata == y_gpu.gpudata) and \
           plan.fft_type not in [cufft.CUFFT_C2C, cufft.CUFFT_Z2Z]:
        raise ValueError('can only compute in-place transform of complex data')

    if direction == cufft.CUFFT_FORWARD and \
           plan.in_dtype in np.sctypes['complex'] and \
           plan.out_dtype in np.sctypes['float']:
        raise ValueError('cannot compute forward complex -> real transform')

    if direction == cufft.CUFFT_INVERSE and \
           plan.in_dtype in np.sctypes['float'] and \
           plan.out_dtype in np.sctypes['complex']:
        raise ValueError('cannot compute inverse real -> complex transform')

    if plan.fft_type in [cufft.CUFFT_C2C, cufft.CUFFT_Z2Z]:
        plan.fft_func(plan.handle, int(x_gpu.gpudata), int(y_gpu.gpudata),
                      direction)
    else:
        plan.fft_func(plan.handle, int(x_gpu.gpudata),
                      int(y_gpu.gpudata))

    # Scale the result by dividing it by the number of elements:
    if scale is not None:
        func = _get_scale_kernel(y_gpu.dtype)
        func(y_gpu.dtype.type(scale), y_gpu)

def fft(x_gpu, y_gpu, plan, scale=False):
    """
    Fast Fourier Transform.

    Compute the FFT of some data in device memory using the
    specified plan.

    Parameters
    ----------
    x_gpu : pycuda.gpuarray.GPUArray
        Input array.
    y_gpu : pycuda.gpuarray.GPUArray
        FFT of input array.
    plan : Plan
        FFT plan.
    scale : bool, optional
        If True, scale the computed FFT by the number of elements in
        the input array.

    Examples
    --------
    >>> import pycuda.autoinit
    >>> import pycuda.gpuarray as gpuarray
    >>> import numpy as np
    >>> from skcuda.fft import fft, Plan
    >>> N = 128
    >>> x = np.asarray(np.random.rand(N), np.float32)
    >>> xf = np.fft.fft(x)
    >>> x_gpu = gpuarray.to_gpu(x)
    >>> xf_gpu = gpuarray.empty(N/2+1, np.complex64)
    >>> plan = Plan(x.shape, np.float32, np.complex64)
    >>> fft(x_gpu, xf_gpu, plan)
    >>> np.allclose(xf[0:N/2+1], xf_gpu.get(), atol=1e-6)
    True

    Returns
    -------
    y_gpu : pycuda.gpuarray.GPUArray
        Computed FFT.

    Notes
    -----
    For real to complex transformations, this function computes
    N/2+1 non-redundant coefficients of a length-N input signal.
    """

    if scale == True:
        _fft(x_gpu, y_gpu, plan, cufft.CUFFT_FORWARD, x_gpu.size/plan.batch)
    else:
        _fft(x_gpu, y_gpu, plan, cufft.CUFFT_FORWARD)

def ifft(x_gpu, y_gpu, plan, scale=False):
    """
    Inverse Fast Fourier Transform.

    Compute the inverse FFT of some data in device memory using the
    specified plan.

    Parameters
    ----------
    x_gpu : pycuda.gpuarray.GPUArray
        Input array.
    y_gpu : pycuda.gpuarray.GPUArray
        Inverse FFT of input array.
    plan : Plan
        FFT plan.
    scale : bool, optional
        If True, scale the computed inverse FFT by the number of
        elements in the output array.

    Examples
    --------
    >>> import pycuda.autoinit
    >>> import pycuda.gpuarray as gpuarray
    >>> import numpy as np
    >>> from skcuda.fft import fft, Plan
    >>> N = 128
    >>> x = np.asarray(np.random.rand(N), np.float32)
    >>> xf = np.asarray(np.fft.fft(x), np.complex64)
    >>> xf_gpu = gpuarray.to_gpu(xf[0:N/2+1])
    >>> x_gpu = gpuarray.empty(N, np.float32)
    >>> plan = Plan(N, np.complex64, np.float32)
    >>> ifft(xf_gpu, x_gpu, plan, True)
    >>> np.allclose(x, x_gpu.get(), atol=1e-6)
    True

    Notes
    -----
    For complex to real transformations, this function assumes the
    input contains N/2+1 non-redundant FFT coefficents of a signal of
    length N.
    """

    if scale == True:
        _fft(x_gpu, y_gpu, plan, cufft.CUFFT_INVERSE, y_gpu.size/plan.batch)
    else:
        _fft(x_gpu, y_gpu, plan, cufft.CUFFT_INVERSE)

if __name__ == "__main__":
    import doctest
    doctest.testmod()