1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
#!/usr/bin/env python
"""
PyCUDA-based randomized linear algebra functions.
"""
from __future__ import absolute_import, division
from pprint import pprint
from string import Template
from pycuda.tools import context_dependent_memoize
from pycuda.compiler import SourceModule
from pycuda.reduction import ReductionKernel
from pycuda import curandom
from pycuda import cumath
import pycuda.gpuarray as gpuarray
import pycuda.driver as drv
import pycuda.elementwise as el
import pycuda.tools as tools
import numpy as np
from . import cublas
from . import misc
from . import linalg
rand = curandom.MRG32k3aRandomNumberGenerator()
import sys
if sys.version_info < (3,):
range = xrange
class LinAlgError(Exception):
"""Randomized Linear Algebra Error."""
pass
try:
from . import cula
_has_cula = True
except (ImportError, OSError):
_has_cula = False
from .misc import init, add_matvec, div_matvec, mult_matvec
from .linalg import hermitian, transpose
# Get installation location of C headers:
from . import install_headers
def rsvd(a_gpu, k=None, p=0, q=0, method="standard", handle=None):
"""
Randomized Singular Value Decomposition.
Randomized algorithm for computing the approximate low-rank singular value
decomposition of a rectangular (m, n) matrix `a` with target rank `k << n`.
The input matrix a is factored as `a = U * diag(s) * Vt`. The right singluar
vectors are the columns of the real or complex unitary matrix `U`. The left
singular vectors are the columns of the real or complex unitary matrix `V`.
The singular values `s` are non-negative and real numbers.
The paramter `p` is a oversampling parameter to improve the approximation.
A value between 2 and 10 is recommended.
The paramter `q` specifies the number of normlized power iterations
(subspace iterations) to reduce the approximation error. This is recommended
if the the singular values decay slowly and in practice 1 or 2 iterations
achive good results. However, computing power iterations is increasing the
computational time.
If k > (n/1.5), partial SVD or trancated SVD might be faster.
Parameters
----------
a_gpu : pycuda.gpuarray.GPUArray
Real/complex input matrix `a` with dimensions `(m, n)`.
k : int
`k` is the target rank of the low-rank decomposition, k << min(m,n).
p : int
`p` sets the oversampling parameter (default k=0).
q : int
`q` sets the number of power iterations (default=0).
method : `{'standard', 'fast'}`
'standard' : Standard algorithm as described in [1, 2]
'fast' : Version II algorithm as described in [2]
handle : int
CUBLAS context. If no context is specified, the default handle from
`skcuda.misc._global_cublas_handle` is used.
Returns
-------
u_gpu : pycuda.gpuarray
Right singular values, array of shape `(m, k)`.
s_gpu : pycuda.gpuarray
Singular values, 1-d array of length `k`.
vt_gpu : pycuda.gpuarray
Left singular values, array of shape `(k, n)`.
Notes
-----
Double precision is only supported if the standard version of the
CULA Dense toolkit is installed.
This function destroys the contents of the input matrix.
Arrays are assumed to be stored in column-major order, i.e., order='F'.
Input matrix of shape `(m, n)`, where `n>m` is not supported yet.
References
----------
N. Halko, P. Martinsson, and J. Tropp.
"Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix
decompositions" (2009).
(available at `arXiv <http://arxiv.org/abs/0909.4061>`_).
S. Voronin and P.Martinsson.
"RSVDPACK: Subroutines for computing partial singular value
decompositions via randomized sampling on single core, multi core,
and GPU architectures" (2015).
(available at `arXiv <http://arxiv.org/abs/1502.05366>`_).
Examples
--------
>>> import pycuda.gpuarray as gpuarray
>>> import pycuda.autoinit
>>> import numpy as np
>>> from skcuda import linalg, rlinalg
>>> linalg.init()
>>> rlinalg.init()
>>> #Randomized SVD decomposition of the square matrix `a` with single precision.
>>> #Note: There is no gain to use rsvd if k > int(n/1.5)
>>> a = np.array(np.random.randn(5, 5), np.float32, order='F')
>>> a_gpu = gpuarray.to_gpu(a)
>>> U, s, Vt = rlinalg.rsvd(a_gpu, k=5, method='standard')
>>> np.allclose(a, np.dot(U.get(), np.dot(np.diag(s.get()), Vt.get())), 1e-4)
True
>>> #Low-rank SVD decomposition with target rank k=2
>>> a = np.array(np.random.randn(5, 5), np.float32, order='F')
>>> a_gpu = gpuarray.to_gpu(a)
>>> U, s, Vt = rlinalg.rsvd(a_gpu, k=2, method='standard')
"""
#*************************************************************************
#*** Author: N. Benjamin Erichson <nbe@st-andrews.ac.uk> ***
#*** <September, 2015> ***
#*** License: BSD 3 clause ***
#*************************************************************************
if not _has_cula:
raise NotImplementedError('CULA not installed')
if handle is None:
handle = misc._global_cublas_handle
alloc = misc._global_cublas_allocator
# The free version of CULA only supports single precision floating
data_type = a_gpu.dtype.type
real_type = np.float32
if data_type == np.complex64:
cula_func_gesvd = cula.culaDeviceCgesvd
cublas_func_gemm = cublas.cublasCgemm
copy_func = cublas.cublasCcopy
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
TRANS_type = 'C'
isreal = False
elif data_type == np.float32:
cula_func_gesvd = cula.culaDeviceSgesvd
cublas_func_gemm = cublas.cublasSgemm
copy_func = cublas.cublasScopy
alpha = np.float32(1.0)
beta = np.float32(0.0)
TRANS_type = 'T'
isreal = True
else:
if cula._libcula_toolkit == 'standard':
if data_type == np.complex128:
cula_func_gesvd = cula.culaDeviceZgesvd
cublas_func_gemm = cublas.cublasZgemm
copy_func = cublas.cublasZcopy
alpha = np.complex128(1.0)
beta = np.complex128(0.0)
TRANS_type = 'C'
isreal = False
elif data_type == np.float64:
cula_func_gesvd = cula.culaDeviceDgesvd
cublas_func_gemm = cublas.cublasDgemm
copy_func = cublas.cublasDcopy
alpha = np.float64(1.0)
beta = np.float64(0.0)
TRANS_type = 'T'
isreal = True
else:
raise ValueError('unsupported type')
real_type = np.float64
else:
raise ValueError('double precision not supported')
#CUDA assumes that arrays are stored in column-major order
m, n = np.array(a_gpu.shape, int)
if n>m : raise ValueError('input matrix of shape (m,n), where n>m is not supported')
#Set k
if k == None : raise ValueError('k must be provided')
if k > n or k < 1: raise ValueError('k must be 0 < k <= n')
kt = k
k = k + p
if k > n: k=n
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Generate a random sampling matrix O
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if isreal==False:
Oimag_gpu = gpuarray.empty((n,k), real_type, order="F", allocator=alloc)
Oreal_gpu = gpuarray.empty((n,k), real_type, order="F", allocator=alloc)
O_gpu = gpuarray.empty((n,k), data_type, order="F", allocator=alloc)
rand.fill_uniform(Oimag_gpu)
rand.fill_uniform(Oreal_gpu)
O_gpu = Oreal_gpu + 1j * Oimag_gpu
O_gpu = O_gpu.T * 2 - 1 #Scale to [-1,1]
else:
O_gpu = gpuarray.empty((n,k), real_type, order="F", allocator=alloc)
rand.fill_uniform(O_gpu) #Draw random samples from a ~ Uniform(-1,1) distribution
O_gpu = O_gpu * 2 - 1 #Scale to [-1,1]
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Build sample matrix Y : Y = A * O
#Note: Y should approximate the range of A
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Allocate Y
Y_gpu = gpuarray.zeros((m,k), data_type, order="F", allocator=alloc)
#Dot product Y = A * O
cublas_func_gemm(handle, 'n', 'n', m, k, n, alpha,
a_gpu.gpudata, m, O_gpu.gpudata, n,
beta, Y_gpu.gpudata, m )
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Orthogonalize Y using economic QR decomposition: Y=QR
#If q > 0 perfrom q subspace iterations
#Note: economic QR just returns Q, and destroys Y_gpu
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if q > 0:
Z_gpu = gpuarray.empty((n,k), data_type, order="F", allocator=alloc)
for i in np.arange(1, q+1 ):
if( (2*i-2)%q == 0 ):
Y_gpu = linalg.qr(Y_gpu, 'economic', lib='cula')
cublas_func_gemm(handle, TRANS_type, 'n', n, k, m, alpha,
a_gpu.gpudata, m, Y_gpu.gpudata, m,
beta, Z_gpu.gpudata, n )
if( (2*i-1)%q == 0 ):
Z_gpu = linalg.qr(Z_gpu, 'economic', lib='cula')
cublas_func_gemm(handle, 'n', 'n', m, k, n, alpha,
a_gpu.gpudata, m, Z_gpu.gpudata, n,
beta, Y_gpu.gpudata, m )
#End for
#End if
Q_gpu = linalg.qr(Y_gpu, 'economic', lib='cula')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Project the data matrix a into a lower dimensional subspace
#B = Q.T * A
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Allocate B
B_gpu = gpuarray.empty((k,n), data_type, order="F", allocator=alloc)
cublas_func_gemm(handle, TRANS_type, 'n', k, n, m, alpha,
Q_gpu.gpudata, m, a_gpu.gpudata, m,
beta, B_gpu.gpudata, k )
if method == 'standard':
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Singular Value Decomposition
#Note: B = U" * S * Vt
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#gesvd(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt)
#Allocate s, U, Vt for economic SVD
#Note: singular values are always real
s_gpu = gpuarray.empty(k, real_type, order="F", allocator=alloc)
U_gpu = gpuarray.empty((k,k), data_type, order="F", allocator=alloc)
Vt_gpu = gpuarray.empty((k,n), data_type, order="F", allocator=alloc)
#Economic SVD
cula_func_gesvd('S', 'S', k, n, int(B_gpu.gpudata), k, int(s_gpu.gpudata),
int(U_gpu.gpudata), k, int(Vt_gpu.gpudata), k)
#Compute right singular vectors as U = Q * U"
cublas_func_gemm(handle, 'n', 'n', m, k, k, alpha,
Q_gpu.gpudata, m, U_gpu.gpudata, k,
beta, Q_gpu.gpudata, m )
U_gpu = Q_gpu #Set pointer
# Free internal CULA memory:
cula.culaFreeBuffers()
#Return
return U_gpu[ : , 0:kt ], s_gpu[ 0:kt ], Vt_gpu[ 0:kt , : ]
elif method == 'fast':
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Orthogonalize B.T using reduced QR decomposition: B.T = Q" * R"
#Note: reduced QR returns Q and R, and destroys B_gpu
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if isreal==True:
B_gpu = transpose(B_gpu) #transpose B
else:
B_gpu = hermitian(B_gpu) #transpose B
Qstar_gpu, Rstar_gpu = linalg.qr(B_gpu, 'reduced', lib='cula')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Singular Value Decomposition of R"
#Note: R" = U" * S" * Vt"
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#gesvd(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt)
#Allocate s, U, Vt for economic SVD
#Note: singular values are always real
s_gpu = gpuarray.empty(k, real_type, order="F", allocator=alloc)
Ustar_gpu = gpuarray.empty((k,k), data_type, order="F", allocator=alloc)
Vtstar_gpu = gpuarray.empty((k,k), data_type, order="F", allocator=alloc)
#Economic SVD
cula_func_gesvd('A', 'A', k, k, int(Rstar_gpu.gpudata), k, int(s_gpu.gpudata),
int(Ustar_gpu.gpudata), k, int(Vtstar_gpu.gpudata), k)
#Compute right singular vectors as U = Q * Vt.T"
cublas_func_gemm(handle, 'n', TRANS_type, m, k, k, alpha,
Q_gpu.gpudata, m, Vtstar_gpu.gpudata, k,
beta, Q_gpu.gpudata, m )
U_gpu = Q_gpu #Set pointer
#Compute left singular vectors as Vt = U".T * Q".T
Vt_gpu = gpuarray.empty((k,n), data_type, order="F", allocator=alloc)
cublas_func_gemm(handle, TRANS_type, TRANS_type, k, n, k, alpha,
Ustar_gpu.gpudata, k, Qstar_gpu.gpudata, n,
beta, Vt_gpu.gpudata, k )
# Free internal CULA memory:
cula.culaFreeBuffers()
#Return
return U_gpu[ : , 0:kt ], s_gpu[ 0:kt ], Vt_gpu[ 0:kt , : ]
#End if
def rdmd(a_gpu, k=None, p=5, q=1, modes='exact', method_rsvd='standard', return_amplitudes=False, return_vandermonde=False, handle=None):
"""
Randomized Dynamic Mode Decomposition.
Dynamic Mode Decomposition (DMD) is a data processing algorithm which
allows to decompose a matrix `a` in space and time.
The matrix `a` is decomposed as `a = FBV`, where the columns of `F`
contain the dynamic modes. The modes are ordered corresponding
to the amplitudes stored in the diagonal matrix `B`. `V` is a Vandermonde
matrix describing the temporal evolution.
Parameters
----------
a_gpu : pycuda.gpuarray.GPUArray
Real/complex input matrix `a` with dimensions `(m, n)`.
k : int, optional
If `k < (n-1)` low-rank Dynamic Mode Decomposition is computed.
p : int
`p` sets the oversampling parameter for rSVD (default k=5).
q : int
`q` sets the number of power iterations for rSVD (default=1).
modes : `{'standard', 'exact'}`
'standard' : uses the standard definition to compute the dynamic modes,
`F = U * W`.
'exact' : computes the exact dynamic modes, `F = Y * V * (S**-1) * W`.
method_rsvd : `{'standard', 'fast'}`
'standard' : (default) Standard algorithm as described in [1, 2]
'fast' : Version II algorithm as described in [2]
return_amplitudes : bool `{True, False}`
True: return amplitudes in addition to dynamic modes.
return_vandermonde : bool `{True, False}`
True: return Vandermonde matrix in addition to dynamic modes and amplitudes.
handle : int
CUBLAS context. If no context is specified, the default handle from
`skcuda.misc._global_cublas_handle` is used.
Returns
-------
f_gpu : pycuda.gpuarray.GPUArray
Matrix containing the dynamic modes of shape `(m, n-1)` or `(m, k)`.
b_gpu : pycuda.gpuarray.GPUArray
1-D array containing the amplitudes of length `min(n-1, k)`.
v_gpu : pycuda.gpuarray.GPUArray
Vandermonde matrix of shape `(n-1, n-1)` or `(k, n-1)`.
Notes
-----
Double precision is only supported if the standard version of the
CULA Dense toolkit is installed.
This function destroys the contents of the input matrix.
Arrays are assumed to be stored in column-major order, i.e., order='F'.
References
----------
N. B. Erichson and C. Donovan.
"Randomized Low-Rank Dynamic Mode Decomposition for Motion Detection"
Under Review.
N. Halko, P. Martinsson, and J. Tropp.
"Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix
decompositions" (2009).
(available at `arXiv <http://arxiv.org/abs/0909.4061>`_).
J. H. Tu, et al.
"On dynamic mode decomposition: theory and applications."
arXiv preprint arXiv:1312.0041 (2013).
Examples
--------
>>> #Numpy
>>> import numpy as np
>>> #Plot libs
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm
>>> #GPU DMD libs
>>> import pycuda.gpuarray as gpuarray
>>> import pycuda.autoinit
>>> from skcuda import linalg, rlinalg
>>> linalg.init()
>>> rlinalg.init()
>>> # Define time and space discretizations
>>> x=np.linspace( -15, 15, 200)
>>> t=np.linspace(0, 8*np.pi , 80)
>>> dt=t[2]-t[1]
>>> X, T = np.meshgrid(x,t)
>>> # Create two patio-temporal patterns
>>> F1 = 0.5* np.cos(X)*(1.+0.* T)
>>> F2 = ( (1./np.cosh(X)) * np.tanh(X)) *(2.*np.exp(1j*2.8*T))
>>> # Add both signals
>>> F = (F1+F2)
>>> #Plot dataset
>>> fig = plt.figure()
>>> ax = fig.add_subplot(231, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X, T, F, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=True)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F')
>>> ax = fig.add_subplot(232, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X, T, F1, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F1')
>>> ax = fig.add_subplot(233, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X, T, F2, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F2')
>>> #Dynamic Mode Decomposition
>>> F_gpu = np.array(F.T, np.complex64, order='F')
>>> F_gpu = gpuarray.to_gpu(F_gpu)
>>> Fmodes_gpu, b_gpu, V_gpu, omega_gpu = rlinalg.rdmd(F_gpu, k=2, p=0, q=1, modes='exact', return_amplitudes=True, return_vandermonde=True)
>>> omega = omega_gpu.get()
>>> plt.scatter(omega.real, omega.imag, marker='o', c='r')
>>> #Recover original signal
>>> F1tilde = np.dot(Fmodes_gpu[:,0:1].get() , np.dot(b_gpu[0].get(), V_gpu[0:1,:].get() ) )
>>> F2tilde = np.dot(Fmodes_gpu[:,1:2].get() , np.dot(b_gpu[1].get(), V_gpu[1:2,:].get() ) )
>>> #Plot DMD modes
>>> #Mode 0
>>> ax = fig.add_subplot(235, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X[0:F1tilde.shape[1],:], T[0:F1tilde.shape[1],:], F1tilde.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F1_tilde')
>>> #Mode 1
>>> ax = fig.add_subplot(236, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X[0:F2tilde.shape[1],:], T[0:F2tilde.shape[1],:], F2tilde.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F2_tilde')
>>> plt.show()
"""
#*************************************************************************
#*** Author: N. Benjamin Erichson <nbe@st-andrews.ac.uk> ***
#*** <2015> ***
#*** License: BSD 3 clause ***
#*************************************************************************
if not _has_cula:
raise NotImplementedError('CULA not installed')
if handle is None:
handle = misc._global_cublas_handle
alloc = misc._global_cublas_allocator
# The free version of CULA only supports single precision floating
data_type = a_gpu.dtype.type
real_type = np.float32
if data_type == np.complex64:
cula_func_gesvd = cula.culaDeviceCgesvd
cublas_func_gemm = cublas.cublasCgemm
cublas_func_dgmm = cublas.cublasCdgmm
cula_func_gels = cula.culaDeviceCgels
copy_func = cublas.cublasCcopy
transpose_func = cublas.cublasCgeam
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
TRANS_type = 'C'
isreal = False
elif data_type == np.float32:
cula_func_gesvd = cula.culaDeviceSgesvd
cublas_func_gemm = cublas.cublasSgemm
cublas_func_dgmm = cublas.cublasSdgmm
cula_func_gels = cula.culaDeviceSgels
copy_func = cublas.cublasScopy
transpose_func = cublas.cublasSgeam
alpha = np.float32(1.0)
beta = np.float32(0.0)
TRANS_type = 'T'
isreal = True
else:
if cula._libcula_toolkit == 'standard':
if data_type == np.complex128:
cula_func_gesvd = cula.culaDeviceZgesvd
cublas_func_gemm = cublas.cublasZgemm
cublas_func_dgmm = cublas.cublasZdgmm
cula_func_gels = cula.culaDeviceZgels
copy_func = cublas.cublasZcopy
transpose_func = cublas.cublasZgeam
alpha = np.complex128(1.0)
beta = np.complex128(0.0)
TRANS_type = 'C'
isreal = False
elif data_type == np.float64:
cula_func_gesvd = cula.culaDeviceDgesvd
cublas_func_gemm = cublas.cublasDgemm
cublas_func_dgmm = cublas.cublasDdgmm
cula_func_gels = cula.culaDeviceDgels
copy_func = cublas.cublasDcopy
transpose_func = cublas.cublasDgeam
alpha = np.float64(1.0)
beta = np.float64(0.0)
TRANS_type = 'T'
isreal = True
else:
raise ValueError('unsupported type')
real_type = np.float64
else:
raise ValueError('double precision not supported')
#CUDA assumes that arrays are stored in column-major order
m, n = np.array(a_gpu.shape, int)
nx = n-1
#Set k
if k == None : k = nx
if k > nx or k < 1: raise ValueError('k is not valid')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Split data into lef and right snapshot sequence
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Note: we need a copy of X_gpu, because SVD destroys X_gpu
#While Y_gpu is just a pointer
X_gpu = gpuarray.empty((m, n), data_type, order="F", allocator=alloc)
copy_func(handle, X_gpu.size, int(a_gpu.gpudata), 1, int(X_gpu.gpudata), 1)
X_gpu = X_gpu[:, :nx]
Y_gpu = a_gpu[:, 1:]
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Randomized Singular Value Decomposition
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
U_gpu, s_gpu, Vh_gpu = rsvd(X_gpu, k=k, p=p, q=q,
method=method_rsvd, handle=handle)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Solve the LS problem to find estimate for M using the pseudo-inverse
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#real: M = U.T * Y * Vt.T * S**-1
#complex: M = U.H * Y * Vt.H * S**-1
#Let G = Y * Vt.H * S**-1, hence M = M * G
#Allocate G and M
G_gpu = gpuarray.empty((m,k), data_type, order="F", allocator=alloc)
M_gpu = gpuarray.empty((k,k), data_type, order="F", allocator=alloc)
#i) s = s **-1 (inverse)
if data_type == np.complex64 or data_type == np.complex128:
s_gpu = 1/s_gpu
s_gpu = s_gpu + 1j * gpuarray.zeros_like(s_gpu)
else:
s_gpu = 1.0/s_gpu
#ii) real/complex: scale Vs = Vt* x diag(s**-1)
Vs_gpu = gpuarray.empty((nx,k), data_type, order="F", allocator=alloc)
lda = max(1, Vh_gpu.strides[1] // Vh_gpu.dtype.itemsize)
ldb = max(1, Vs_gpu.strides[1] // Vs_gpu.dtype.itemsize)
transpose_func(handle, TRANS_type, TRANS_type, nx, k,
alpha, int(Vh_gpu.gpudata), lda, beta, int(Vh_gpu.gpudata), lda,
int(Vs_gpu.gpudata), ldb)
cublas_func_dgmm(handle, 'r', nx, k, int(Vs_gpu.gpudata), nx,
int(s_gpu.gpudata), 1 , int(Vs_gpu.gpudata), nx)
#iii) real: G = Y * Vs , complex: G = Y x Vs
cublas_func_gemm(handle, 'n', 'n', m, k, nx, alpha,
int(Y_gpu.gpudata), m, int(Vs_gpu.gpudata), nx,
beta, int(G_gpu.gpudata), m )
#iv) real/complex: M = U* x G
cublas_func_gemm(handle, TRANS_type, 'n', k, k, m, alpha,
int(U_gpu.gpudata), m, int(G_gpu.gpudata), m,
beta, int(M_gpu.gpudata), k )
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Eigen Decomposition
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Note: If a_gpu is real the imag part is omitted
Vr_gpu, w_gpu = linalg.eig(M_gpu, 'N', 'V', 'F', lib='cula')
omega = cumath.log(w_gpu)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Compute DMD Modes
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F_gpu = gpuarray.empty((m,k), data_type, order="F", allocator=alloc)
modes = modes.lower()
if modes == 'exact': #Compute (exact) DMD modes: F = Y * V * S**-1 * W = G * W
cublas_func_gemm(handle, 'n', 'n', m, k, k, alpha,
G_gpu.gpudata, m, Vr_gpu.gpudata, k,
beta, G_gpu.gpudata, m )
F_gpu_temp = G_gpu
elif modes == 'standard': #Compute (standard) DMD modes: F = U * W
cublas_func_gemm(handle, 'n', 'n', m, k, k,
alpha, U_gpu.gpudata, m, Vr_gpu.gpudata, k,
beta, U_gpu.gpudata, m )
F_gpu_temp = U_gpu
else:
raise ValueError('Type of modes is not supported, choose "exact" or "standard".')
#Copy is required, because gels destroys input
copy_func(handle, F_gpu_temp.size, int(F_gpu_temp.gpudata),
1, int(F_gpu.gpudata), 1)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Compute amplitueds b using least-squares: Fb=x1
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if return_amplitudes==True:
#x1_gpu = a_gpu[:,0].copy()
x1_gpu = gpuarray.empty(m, data_type, order="F", allocator=alloc)
copy_func(handle, x1_gpu.size, int(a_gpu[:,0].gpudata), 1, int(x1_gpu.gpudata), 1)
cula_func_gels( 'N', m, k, int(1) , F_gpu_temp.gpudata, m, x1_gpu.gpudata, m)
b_gpu = x1_gpu
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Compute Vandermonde matrix (CPU)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if return_vandermonde==True:
V_gpu = linalg.vander(w_gpu, n=nx)
# Free internal CULA memory:
cula.culaFreeBuffers()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Return
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if return_amplitudes==True and return_vandermonde==True:
return F_gpu, b_gpu[:k], V_gpu, omega
elif return_amplitudes==True and return_vandermonde==False:
return F_gpu, b_gpu[:k], omega
elif return_amplitudes==False and return_vandermonde==True:
return F_gpu, V_gpu, omega
else:
return F_gpu, omega
def cdmd(a_gpu, k=None, c=None, modes='exact', return_amplitudes=False, return_vandermonde=False, handle=None):
"""
Compressed Dynamic Mode Decomposition.
Dynamic Mode Decomposition (DMD) is a data processing algorithm which
allows to decompose a matrix `a` in space and time.
The matrix `a` is decomposed as `a = FBV`, where the columns of `F`
contain the dynamic modes. The modes are ordered corresponding
to the amplitudes stored in the diagonal matrix `B`. `V` is a Vandermonde
matrix describing the temporal evolution.
Parameters
----------
a_gpu : pycuda.gpuarray.GPUArray
Real/complex input matrix `a` with dimensions `(m, n)`.
k : int, optional
If `k < (n-1)` low-rank Dynamic Mode Decomposition is computed.
c : int
`p` sets the number of measurements sensors.
modes : `{'exact'}`
'exact' : computes the exact dynamic modes, `F = Y * V * (S**-1) * W`.
return_amplitudes : bool `{True, False}`
True: return amplitudes in addition to dynamic modes.
return_vandermonde : bool `{True, False}`
True: return Vandermonde matrix in addition to dynamic modes and amplitudes.
handle : int
CUBLAS context. If no context is specified, the default handle from
`skcuda.misc._global_cublas_handle` is used.
Returns
-------
f_gpu : pycuda.gpuarray.GPUArray
Matrix containing the dynamic modes of shape `(m, n-1)` or `(m, k)`.
b_gpu : pycuda.gpuarray.GPUArray
1-D array containing the amplitudes of length `min(n-1, k)`.
v_gpu : pycuda.gpuarray.GPUArray
Vandermonde matrix of shape `(n-1, n-1)` or `(k, n-1)`.
Notes
-----
Double precision is only supported if the standard version of the
CULA Dense toolkit is installed.
This function destroys the contents of the input matrix.
Arrays are assumed to be stored in column-major order, i.e., order='F'.
References
----------
S. L. Brunton, et al.
"Compressed sampling and dynamic mode decomposition."
arXiv preprint arXiv:1312.5186 (2013).
J. H. Tu, et al.
"On dynamic mode decomposition: theory and applications."
arXiv preprint arXiv:1312.0041 (2013).
Examples
--------
>>> #Numpy
>>> import numpy as np
>>> #Plot libs
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm
>>> #GPU DMD libs
>>> import pycuda.gpuarray as gpuarray
>>> import pycuda.autoinit
>>> from skcuda import linalg, rlinalg
>>> linalg.init()
>>> rlinalg.init()
>>> # Define time and space discretizations
>>> x=np.linspace( -15, 15, 200)
>>> t=np.linspace(0, 8*np.pi , 80)
>>> dt=t[2]-t[1]
>>> X, T = np.meshgrid(x,t)
>>> # Create two patio-temporal patterns
>>> F1 = 0.5* np.cos(X)*(1.+0.* T)
>>> F2 = ( (1./np.cosh(X)) * np.tanh(X)) *(2.*np.exp(1j*2.8*T))
>>> # Add both signals
>>> F = (F1+F2)
>>> #Plot dataset
>>> fig = plt.figure()
>>> ax = fig.add_subplot(231, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X, T, F, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=True)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F')
>>> ax = fig.add_subplot(232, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X, T, F1, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F1')
>>> ax = fig.add_subplot(233, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X, T, F2, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F2')
>>> #Dynamic Mode Decomposition
>>> F_gpu = np.array(F.T, np.complex64, order='F')
>>> F_gpu = gpuarray.to_gpu(F_gpu)
>>> Fmodes_gpu, b_gpu, V_gpu, omega_gpu = rlinalg.cdmd(F_gpu, k=2, c=20, modes='exact', return_amplitudes=True, return_vandermonde=True)
>>> omega = omega_gpu.get()
>>> plt.scatter(omega.real, omega.imag, marker='o', c='r')
>>> #Recover original signal
>>> F1tilde = np.dot(Fmodes_gpu[:,0:1].get() , np.dot(b_gpu[0].get(), V_gpu[0:1,:].get() ) )
>>> F2tilde = np.dot(Fmodes_gpu[:,1:2].get() , np.dot(b_gpu[1].get(), V_gpu[1:2,:].get() ) )
>>> # Plot DMD modes
>>> #Mode 0
>>> ax = fig.add_subplot(235, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X[0:F1tilde.shape[1],:], T[0:F1tilde.shape[1],:], F1tilde.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F1_tilde')
>>> #Mode 1
>>> ax = fig.add_subplot(236, projection='3d')
>>> ax = fig.gca(projection='3d')
>>> surf = ax.plot_surface(X[0:F2tilde.shape[1],:], T[0:F2tilde.shape[1],:], F2tilde.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
>>> ax.set_zlim(-1, 1)
>>> plt.title('F2_tilde')
>>> plt.show()
"""
#*************************************************************************
#*** Author: N. Benjamin Erichson <nbe@st-andrews.ac.uk> ***
#*** <2015> ***
#*** License: BSD 3 clause ***
#*************************************************************************
if not _has_cula:
raise NotImplementedError('CULA not installed')
if handle is None:
handle = misc._global_cublas_handle
alloc = misc._global_cublas_allocator
# The free version of CULA only supports single precision floating
data_type = a_gpu.dtype.type
real_type = np.float32
if data_type == np.complex64:
cula_func_gesvd = cula.culaDeviceCgesvd
cublas_func_gemm = cublas.cublasCgemm
cublas_func_dgmm = cublas.cublasCdgmm
cula_func_gels = cula.culaDeviceCgels
copy_func = cublas.cublasCcopy
transpose_func = cublas.cublasCgeam
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
TRANS_type = 'C'
isreal = False
elif data_type == np.float32:
cula_func_gesvd = cula.culaDeviceSgesvd
cublas_func_gemm = cublas.cublasSgemm
cublas_func_dgmm = cublas.cublasSdgmm
cula_func_gels = cula.culaDeviceSgels
copy_func = cublas.cublasScopy
transpose_func = cublas.cublasSgeam
alpha = np.float32(1.0)
beta = np.float32(0.0)
TRANS_type = 'T'
isreal = True
else:
if cula._libcula_toolkit == 'standard':
if data_type == np.complex128:
cula_func_gesvd = cula.culaDeviceZgesvd
cublas_func_gemm = cublas.cublasZgemm
cublas_func_dgmm = cublas.cublasZdgmm
cula_func_gels = cula.culaDeviceZgels
copy_func = cublas.cublasZcopy
transpose_func = cublas.cublasZgeam
alpha = np.complex128(1.0)
beta = np.complex128(0.0)
TRANS_type = 'C'
isreal = False
elif data_type == np.float64:
cula_func_gesvd = cula.culaDeviceDgesvd
cublas_func_gemm = cublas.cublasDgemm
cublas_func_dgmm = cublas.cublasDdgmm
cula_func_gels = cula.culaDeviceDgels
copy_func = cublas.cublasDcopy
transpose_func = cublas.cublasDgeam
alpha = np.float64(1.0)
beta = np.float64(0.0)
TRANS_type = 'T'
isreal = True
else:
raise ValueError('unsupported type')
real_type = np.float64
else:
raise ValueError('double precision not supported')
#CUDA assumes that arrays are stored in column-major order
m, n = np.array(a_gpu.shape, int)
nx = n-1
#Set k
if k == None : k = nx
if k > nx or k < 1: raise ValueError('k is not valid')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Compress
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if c==None:
Ac_gpu = A
c=m
else:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Generate a random sensing matrix S
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if isreal==False:
Simag_gpu = gpuarray.empty((m,c), real_type, order="F", allocator=alloc)
Sreal_gpu = gpuarray.empty((m,c), real_type, order="F", allocator=alloc)
S_gpu = gpuarray.empty((c,m), data_type, order="F", allocator=alloc)
rand.fill_uniform(Simag_gpu)
rand.fill_uniform(Sreal_gpu)
S_gpu = Sreal_gpu + 1j * Simag_gpu
S_gpu = S_gpu.T * 2 -1 #Scale to [-1,1]
else:
S_gpu = gpuarray.empty((c,m), real_type, order="F", allocator=alloc)
rand.fill_uniform(S_gpu) #Draw random samples from a ~ Uniform(-1,1) distribution
S_gpu = S_gpu * 2 - 1 #Scale to [-1,1]
#Allocate Ac
Ac_gpu = gpuarray.empty((c,n), data_type, order="F", allocator=alloc)
#Compress input matrix
cublas_func_gemm(handle, 'n', 'n', c, n, m, alpha,
int(S_gpu.gpudata), c, int(a_gpu.gpudata), m,
beta, int(Ac_gpu.gpudata), c )
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Split data into lef and right snapshot sequence
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Note: we need a copy of X_gpu, because SVD destroys X_gpu
#While Y_gpu is just a pointer
X_gpu = gpuarray.empty((c, n), data_type, order="F", allocator=alloc)
copy_func(handle, X_gpu.size, int(Ac_gpu.gpudata), 1, int(X_gpu.gpudata), 1)
X_gpu = X_gpu[:, :nx]
Y_gpu = Ac_gpu[:, 1:]
Yorig_gpu = a_gpu[:, 1:]
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Singular Value Decomposition
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Allocate s, U, Vt for economic SVD
#Note: singular values are always real
min_s = min(nx,c)
s_gpu = gpuarray.zeros(min_s, real_type, order="F", allocator=alloc)
U_gpu = gpuarray.zeros((c,min_s), data_type, order="F", allocator=alloc)
Vh_gpu = gpuarray.zeros((min_s,nx), data_type, order="F", allocator=alloc)
#Economic SVD
cula_func_gesvd('S', 'S', c, nx, int(X_gpu.gpudata), c, int(s_gpu.gpudata),
int(U_gpu.gpudata), c, int(Vh_gpu.gpudata), min_s)
#Low-rank DMD: trancate SVD if k < nx
if k != nx:
s_gpu = s_gpu[:k]
U_gpu = U_gpu[: , :k]
Vh_gpu = Vh_gpu[:k , : ]
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Solve the LS problem to find estimate for M using the pseudo-inverse
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#real: M = U.T * Y * Vt.T * S**-1
#complex: M = U.H * Y * Vt.H * S**-1
#Let G = Y * Vt.H * S**-1, hence M = M * G
#Allocate G and M
G_gpu = gpuarray.zeros((c,k), data_type, order="F", allocator=alloc)
M_gpu = gpuarray.zeros((k,k), data_type, order="F", allocator=alloc)
#i) s = s **-1 (inverse)
if data_type == np.complex64 or data_type == np.complex128:
s_gpu = 1/s_gpu
s_gpu = s_gpu + 1j * gpuarray.zeros_like(s_gpu)
else:
s_gpu = 1/s_gpu
#ii) real/complex: scale Vs = Vt* x diag(s**-1)
Vs_gpu = gpuarray.zeros((nx,k), data_type, order="F", allocator=alloc)
lda = max(1, Vh_gpu.strides[1] // Vh_gpu.dtype.itemsize)
ldb = max(1, Vs_gpu.strides[1] // Vs_gpu.dtype.itemsize)
transpose_func(handle, TRANS_type, TRANS_type, nx, k,
1.0, int(Vh_gpu.gpudata), lda, 0.0, int(Vh_gpu.gpudata), lda,
int(Vs_gpu.gpudata), ldb)
#End Transpose
cublas_func_dgmm(handle, 'r', nx, k, int(Vs_gpu.gpudata), nx,
int(s_gpu.gpudata), 1 , int(Vs_gpu.gpudata), nx)
#iii) real: G = Y * Vs , complex: G = Y x Vs
cublas_func_gemm(handle, 'n', 'n', c, k, nx, alpha,
int(Y_gpu.gpudata), c, int(Vs_gpu.gpudata), nx,
beta, int(G_gpu.gpudata), c )
#iv) real/complex: M = U* x G
cublas_func_gemm(handle, TRANS_type, 'n', k, k, c, alpha,
int(U_gpu.gpudata), c, int(G_gpu.gpudata), c,
beta, int(M_gpu.gpudata), k )
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Eigen Decomposition
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Note: If a_gpu is real the imag part is omitted
Vr_gpu, w_gpu = linalg.eig(M_gpu, 'N', 'V', 'F', lib='cula')
omega = cumath.log(w_gpu)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Compute DMD Modes
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F_gpu = gpuarray.empty((m,k), data_type, order="F", allocator=alloc)
modes = modes.lower()
if modes == 'exact': #Compute (exact) DMD modes: F = Y * V * S**-1 * W = G * W
cublas_func_gemm(handle, 'n' , 'n', nx, k, k, alpha,
int(Vs_gpu.gpudata), nx, int(Vr_gpu.gpudata), k,
beta, int(Vs_gpu.gpudata), nx )
cublas_func_gemm(handle, 'n', 'n', m, k, nx, alpha,
Yorig_gpu.gpudata, m, Vs_gpu.gpudata, nx,
beta, F_gpu.gpudata, m )
else:
raise ValueError('Type of modes is not supported, choose "exact" or "standard".')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Compute amplitueds b using least-squares: Fb=x1
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if return_amplitudes==True:
F_gpu_temp = gpuarray.empty((m,k), data_type, order="F", allocator=alloc)
#Copy is required, because gels destroys input
copy_func(handle, F_gpu.size, int(F_gpu.gpudata),
1, int(F_gpu_temp.gpudata), 1)
#x1_gpu = a_gpu[:,0].copy()
x1_gpu = gpuarray.empty(m, data_type, order="F", allocator=alloc)
copy_func(handle, x1_gpu.size, int(a_gpu[:,0].gpudata), 1, int(x1_gpu.gpudata), 1)
cula_func_gels( 'N', m, k, int(1) , F_gpu_temp.gpudata, m, x1_gpu.gpudata, m)
b_gpu = x1_gpu
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Compute Vandermonde matrix (CPU)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if return_vandermonde==True:
V_gpu = linalg.vander(w_gpu, n=nx)
# Free internal CULA memory:
cula.culaFreeBuffers()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Return
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if return_amplitudes==True and return_vandermonde==True:
return F_gpu, b_gpu[:k], V_gpu, omega
elif return_amplitudes==True and return_vandermonde==False:
return F_gpu, b_gpu[:k], omega
elif return_amplitudes==False and return_vandermonde==True:
return F_gpu, V_gpu, omega
else:
return F_gpu, omega
if __name__ == "__main__":
import doctest
doctest.testmod()
|