File: io.rst

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (387 lines) | stat: -rw-r--r-- 8,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
File IO (:mod:`scipy.io`)
=========================

.. sectionauthor:: Matthew Brett

.. currentmodule:: scipy.io

.. seealso:: :ref:`numpy-reference.routines.io` (in numpy)

MATLAB files
------------

.. autosummary::
   :toctree: generated/

   loadmat
   savemat

Getting started:

   >>> import scipy.io as sio

If you are using IPython, try tab completing on ``sio``.  You'll find::

   sio.loadmat
   sio.savemat

These are the high-level functions you will most likely use.  You'll
also find::

   sio.matlab

This is the package from which ``loadmat`` and ``savemat`` are imported.
Within ``sio.matlab``, you will find the ``mio`` module - containing
the machinery that ``loadmat`` and ``savemat`` use.  From time to time
you may find yourself re-using this machinery.

How do I start?
```````````````

You may have a ``.mat`` file that you want to read into Scipy.  Or, you
want to pass some variables from Scipy / Numpy into MATLAB.

To save us using a MATLAB license, let's start in Octave_.  Octave has
MATLAB-compatible save / load functions.  Start Octave (``octave`` at
the command line for me):

.. sourcecode:: octave

  octave:1> a = 1:12
  a =

     1   2   3   4   5   6   7   8   9  10  11  12

  octave:2> a = reshape(a, [1 3 4])
  a =

  ans(:,:,1) =

     1   2   3

  ans(:,:,2) =

     4   5   6

  ans(:,:,3) =

     7   8   9

  ans(:,:,4) =

     10   11   12



  octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
  octave:4> ls octave_a.mat
  octave_a.mat

Now, to Python:

  >>> mat_contents = sio.loadmat('octave_a.mat')
  >>> print mat_contents
  {'a': array([[[  1.,   4.,   7.,  10.],
          [  2.,   5.,   8.,  11.],
          [  3.,   6.,   9.,  12.]]]),
   '__version__': '1.0',
   '__header__': 'MATLAB 5.0 MAT-file, written by
   Octave 3.2.3, 2010-05-30 02:13:40 UTC',
   '__globals__': []}
  >>> oct_a = mat_contents['a']
  >>> print oct_a
  [[[  1.   4.   7.  10.]
    [  2.   5.   8.  11.]
    [  3.   6.   9.  12.]]]
  >>> print oct_a.shape
  (1, 3, 4)

Now let's try the other way round:

   >>> import numpy as np
   >>> vect = np.arange(10)
   >>> print vect.shape
   (10,)
   >>> sio.savemat('np_vector.mat', {'vect':vect})
   /Users/mb312/usr/local/lib/python2.6/site-packages/scipy/io/matlab/mio.py:196: FutureWarning: Using oned_as default value ('column') This will change to 'row' in future versions
  oned_as=oned_as)

Then back to Octave:

.. sourcecode:: octave

   octave:5> load np_vector.mat
   octave:6> vect
   vect =

     0
     1
     2
     3
     4
     5
     6
     7
     8
     9

   octave:7> size(vect)
   ans =

      10    1

Note the deprecation warning.  The ``oned_as`` keyword determines the way in
which one-dimensional vectors are stored.  In the future, this will default
to ``row`` instead of ``column``:

   >>> sio.savemat('np_vector.mat', {'vect':vect}, oned_as='row')

We can load this in Octave or MATLAB:

.. sourcecode:: octave

   octave:8> load np_vector.mat
   octave:9> vect
   vect =

     0  1  2  3  4  5  6  7  8  9

   octave:10> size(vect)
   ans =

       1   10


MATLAB structs
``````````````

MATLAB structs are a little bit like Python dicts, except the field
names must be strings.  Any MATLAB object can be a value of a field.  As
for all objects in MATLAB, structs are in fact arrays of structs, where
a single struct is an array of shape (1, 1).

.. sourcecode:: octave

   octave:11> my_struct = struct('field1', 1, 'field2', 2)
   my_struct =
   {
     field1 =  1
     field2 =  2
   }

   octave:12> save -6 octave_struct.mat my_struct

We can load this in Python:

   >>> mat_contents = sio.loadmat('octave_struct.mat')
   >>> print mat_contents
   {'my_struct': array([[([[1.0]], [[2.0]])]],
         dtype=[('field1', '|O8'), ('field2', '|O8')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, written by Octave 3.2.3, 2010-05-30 02:00:26 UTC', '__globals__': []}
   >>> oct_struct = mat_contents['my_struct']
   >>> print oct_struct.shape
   (1, 1)
   >>> val = oct_struct[0,0]
   >>> print val
   ([[1.0]], [[2.0]])
   >>> print val['field1']
   [[ 1.]]
   >>> print val['field2']
   [[ 2.]]
   >>> print val.dtype
   [('field1', '|O8'), ('field2', '|O8')]

In this version of Scipy (0.8.0), MATLAB structs come back as numpy
structured arrays, with fields named for the struct fields.  You can see
the field names in the ``dtype`` output above.  Note also:

   >>> val = oct_struct[0,0]

and:

.. sourcecode:: octave

  octave:13> size(my_struct)
  ans =

     1   1

So, in MATLAB, the struct array must be at least 2D, and we replicate
that when we read into Scipy.  If you want all length 1 dimensions
squeezed out, try this:

   >>> mat_contents = sio.loadmat('octave_struct.mat', squeeze_me=True)
   >>> oct_struct = mat_contents['my_struct']
   >>> oct_struct.shape
   ()

Sometimes, it's more convenient to load the MATLAB structs as python
objects rather than numpy structured arrarys - it can make the access
syntax in python a bit more similar to that in MATLAB.  In order to do
this, use the ``struct_as_record=False`` parameter to ``loadmat``.

   >>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False)
   >>> oct_struct = mat_contents['my_struct']
   >>> oct_struct[0,0].field1
   array([[ 1.]])

``struct_as_record=False`` works nicely with ``squeeze_me``:

   >>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False, squeeze_me=True)
   >>> oct_struct = mat_contents['my_struct']
   >>> oct_struct.shape # but no - it's a scalar
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   AttributeError: 'mat_struct' object has no attribute 'shape'
   >>> print type(oct_struct)
   <class 'scipy.io.matlab.mio5_params.mat_struct'>
   >>> print oct_struct.field1
   1.0

Saving struct arrays can be done in various ways.  One simple method is
to use dicts:

   >>> a_dict = {'field1': 0.5, 'field2': 'a string'}
   >>> sio.savemat('saved_struct.mat', {'a_dict': a_dict})

loaded as:

.. sourcecode:: octave

   octave:21> load saved_struct
   octave:22> a_dict
   a_dict =
   {
     field2 = a string
     field1 =  0.50000
   }

You can also save structs back again to MATLAB (or Octave in our case)
like this:

   >>> dt = [('f1', 'f8'), ('f2', 'S10')]
   >>> arr = np.zeros((2,), dtype=dt)
   >>> print arr
   [(0.0, '') (0.0, '')]
   >>> arr[0]['f1'] = 0.5
   >>> arr[0]['f2'] = 'python'
   >>> arr[1]['f1'] = 99
   >>> arr[1]['f2'] = 'not perl'
   >>> sio.savemat('np_struct_arr.mat', {'arr': arr})

MATLAB cell arrays
``````````````````

Cell arrays in MATLAB are rather like python lists, in the sense that
the elements in the arrays can contain any type of MATLAB object.  In
fact they are most similar to numpy object arrays, and that is how we
load them into numpy.

.. sourcecode:: octave

   octave:14> my_cells = {1, [2, 3]}
   my_cells =

   {
     [1,1] =  1
     [1,2] =

        2   3

   }

   octave:15> save -6 octave_cells.mat my_cells

Back to Python:

   >>> mat_contents = sio.loadmat('octave_cells.mat')
   >>> oct_cells = mat_contents['my_cells']
   >>> print oct_cells.dtype
   object
   >>> val = oct_cells[0,0]
   >>> print val
   [[ 1.]]
   >>> print val.dtype
   float64

Saving to a MATLAB cell array just involves making a numpy object array:

   >>> obj_arr = np.zeros((2,), dtype=np.object)
   >>> obj_arr[0] = 1
   >>> obj_arr[1] = 'a string'
   >>> print obj_arr
   [1 a string]
   >>> sio.savemat('np_cells.mat', {'obj_arr':obj_arr})

.. sourcecode:: octave

   octave:16> load np_cells.mat
   octave:17> obj_arr
   obj_arr =

   {
     [1,1] = 1
     [2,1] = a string
   }

IDL files
---------

.. autosummary::
   :toctree: generated/

   readsav

Matrix Market files
-------------------

.. autosummary::
   :toctree: generated/

   mminfo
   mmread
   mmwrite

Other
-----

.. autosummary::
   :toctree: generated/

   save_as_module

Wav sound files (:mod:`scipy.io.wavfile`)
-----------------------------------------

.. module:: scipy.io.wavfile

.. autosummary::
   :toctree: generated/

   read
   write

Arff files (:mod:`scipy.io.arff`)
---------------------------------

.. automodule:: scipy.io.arff

.. autosummary::
   :toctree: generated/

   loadarff

Netcdf (:mod:`scipy.io.netcdf`)
-------------------------------

.. module:: scipy.io.netcdf

.. autosummary::
   :toctree: generated/

   netcdf_file

Allows reading of  NetCDF files (version of pupynere_ package)

.. _pupynere: http://pypi.python.org/pypi/pupynere/
.. _octave: http://www.gnu.org/software/octave
.. _matlab: http://www.mathworks.com/