1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
File IO (:mod:`scipy.io`)
=========================
.. sectionauthor:: Matthew Brett
.. currentmodule:: scipy.io
.. seealso:: :ref:`numpy-reference.routines.io` (in numpy)
MATLAB files
------------
.. autosummary::
:toctree: generated/
loadmat
savemat
Getting started:
>>> import scipy.io as sio
If you are using IPython, try tab completing on ``sio``. You'll find::
sio.loadmat
sio.savemat
These are the high-level functions you will most likely use. You'll
also find::
sio.matlab
This is the package from which ``loadmat`` and ``savemat`` are imported.
Within ``sio.matlab``, you will find the ``mio`` module - containing
the machinery that ``loadmat`` and ``savemat`` use. From time to time
you may find yourself re-using this machinery.
How do I start?
```````````````
You may have a ``.mat`` file that you want to read into Scipy. Or, you
want to pass some variables from Scipy / Numpy into MATLAB.
To save us using a MATLAB license, let's start in Octave_. Octave has
MATLAB-compatible save / load functions. Start Octave (``octave`` at
the command line for me):
.. sourcecode:: octave
octave:1> a = 1:12
a =
1 2 3 4 5 6 7 8 9 10 11 12
octave:2> a = reshape(a, [1 3 4])
a =
ans(:,:,1) =
1 2 3
ans(:,:,2) =
4 5 6
ans(:,:,3) =
7 8 9
ans(:,:,4) =
10 11 12
octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> ls octave_a.mat
octave_a.mat
Now, to Python:
>>> mat_contents = sio.loadmat('octave_a.mat')
>>> print mat_contents
{'a': array([[[ 1., 4., 7., 10.],
[ 2., 5., 8., 11.],
[ 3., 6., 9., 12.]]]),
'__version__': '1.0',
'__header__': 'MATLAB 5.0 MAT-file, written by
Octave 3.2.3, 2010-05-30 02:13:40 UTC',
'__globals__': []}
>>> oct_a = mat_contents['a']
>>> print oct_a
[[[ 1. 4. 7. 10.]
[ 2. 5. 8. 11.]
[ 3. 6. 9. 12.]]]
>>> print oct_a.shape
(1, 3, 4)
Now let's try the other way round:
>>> import numpy as np
>>> vect = np.arange(10)
>>> print vect.shape
(10,)
>>> sio.savemat('np_vector.mat', {'vect':vect})
/Users/mb312/usr/local/lib/python2.6/site-packages/scipy/io/matlab/mio.py:196: FutureWarning: Using oned_as default value ('column') This will change to 'row' in future versions
oned_as=oned_as)
Then back to Octave:
.. sourcecode:: octave
octave:5> load np_vector.mat
octave:6> vect
vect =
0
1
2
3
4
5
6
7
8
9
octave:7> size(vect)
ans =
10 1
Note the deprecation warning. The ``oned_as`` keyword determines the way in
which one-dimensional vectors are stored. In the future, this will default
to ``row`` instead of ``column``:
>>> sio.savemat('np_vector.mat', {'vect':vect}, oned_as='row')
We can load this in Octave or MATLAB:
.. sourcecode:: octave
octave:8> load np_vector.mat
octave:9> vect
vect =
0 1 2 3 4 5 6 7 8 9
octave:10> size(vect)
ans =
1 10
MATLAB structs
``````````````
MATLAB structs are a little bit like Python dicts, except the field
names must be strings. Any MATLAB object can be a value of a field. As
for all objects in MATLAB, structs are in fact arrays of structs, where
a single struct is an array of shape (1, 1).
.. sourcecode:: octave
octave:11> my_struct = struct('field1', 1, 'field2', 2)
my_struct =
{
field1 = 1
field2 = 2
}
octave:12> save -6 octave_struct.mat my_struct
We can load this in Python:
>>> mat_contents = sio.loadmat('octave_struct.mat')
>>> print mat_contents
{'my_struct': array([[([[1.0]], [[2.0]])]],
dtype=[('field1', '|O8'), ('field2', '|O8')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, written by Octave 3.2.3, 2010-05-30 02:00:26 UTC', '__globals__': []}
>>> oct_struct = mat_contents['my_struct']
>>> print oct_struct.shape
(1, 1)
>>> val = oct_struct[0,0]
>>> print val
([[1.0]], [[2.0]])
>>> print val['field1']
[[ 1.]]
>>> print val['field2']
[[ 2.]]
>>> print val.dtype
[('field1', '|O8'), ('field2', '|O8')]
In this version of Scipy (0.8.0), MATLAB structs come back as numpy
structured arrays, with fields named for the struct fields. You can see
the field names in the ``dtype`` output above. Note also:
>>> val = oct_struct[0,0]
and:
.. sourcecode:: octave
octave:13> size(my_struct)
ans =
1 1
So, in MATLAB, the struct array must be at least 2D, and we replicate
that when we read into Scipy. If you want all length 1 dimensions
squeezed out, try this:
>>> mat_contents = sio.loadmat('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
()
Sometimes, it's more convenient to load the MATLAB structs as python
objects rather than numpy structured arrarys - it can make the access
syntax in python a bit more similar to that in MATLAB. In order to do
this, use the ``struct_as_record=False`` parameter to ``loadmat``.
>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct[0,0].field1
array([[ 1.]])
``struct_as_record=False`` works nicely with ``squeeze_me``:
>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False, squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape # but no - it's a scalar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> print type(oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> print oct_struct.field1
1.0
Saving struct arrays can be done in various ways. One simple method is
to use dicts:
>>> a_dict = {'field1': 0.5, 'field2': 'a string'}
>>> sio.savemat('saved_struct.mat', {'a_dict': a_dict})
loaded as:
.. sourcecode:: octave
octave:21> load saved_struct
octave:22> a_dict
a_dict =
{
field2 = a string
field1 = 0.50000
}
You can also save structs back again to MATLAB (or Octave in our case)
like this:
>>> dt = [('f1', 'f8'), ('f2', 'S10')]
>>> arr = np.zeros((2,), dtype=dt)
>>> print arr
[(0.0, '') (0.0, '')]
>>> arr[0]['f1'] = 0.5
>>> arr[0]['f2'] = 'python'
>>> arr[1]['f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat('np_struct_arr.mat', {'arr': arr})
MATLAB cell arrays
``````````````````
Cell arrays in MATLAB are rather like python lists, in the sense that
the elements in the arrays can contain any type of MATLAB object. In
fact they are most similar to numpy object arrays, and that is how we
load them into numpy.
.. sourcecode:: octave
octave:14> my_cells = {1, [2, 3]}
my_cells =
{
[1,1] = 1
[1,2] =
2 3
}
octave:15> save -6 octave_cells.mat my_cells
Back to Python:
>>> mat_contents = sio.loadmat('octave_cells.mat')
>>> oct_cells = mat_contents['my_cells']
>>> print oct_cells.dtype
object
>>> val = oct_cells[0,0]
>>> print val
[[ 1.]]
>>> print val.dtype
float64
Saving to a MATLAB cell array just involves making a numpy object array:
>>> obj_arr = np.zeros((2,), dtype=np.object)
>>> obj_arr[0] = 1
>>> obj_arr[1] = 'a string'
>>> print obj_arr
[1 a string]
>>> sio.savemat('np_cells.mat', {'obj_arr':obj_arr})
.. sourcecode:: octave
octave:16> load np_cells.mat
octave:17> obj_arr
obj_arr =
{
[1,1] = 1
[2,1] = a string
}
IDL files
---------
.. autosummary::
:toctree: generated/
readsav
Matrix Market files
-------------------
.. autosummary::
:toctree: generated/
mminfo
mmread
mmwrite
Other
-----
.. autosummary::
:toctree: generated/
save_as_module
Wav sound files (:mod:`scipy.io.wavfile`)
-----------------------------------------
.. module:: scipy.io.wavfile
.. autosummary::
:toctree: generated/
read
write
Arff files (:mod:`scipy.io.arff`)
---------------------------------
.. automodule:: scipy.io.arff
.. autosummary::
:toctree: generated/
loadarff
Netcdf (:mod:`scipy.io.netcdf`)
-------------------------------
.. module:: scipy.io.netcdf
.. autosummary::
:toctree: generated/
netcdf_file
Allows reading of NetCDF files (version of pupynere_ package)
.. _pupynere: http://pypi.python.org/pypi/pupynere/
.. _octave: http://www.gnu.org/software/octave
.. _matlab: http://www.mathworks.com/
|