File: test_real_transforms.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (244 lines) | stat: -rw-r--r-- 8,412 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python
from os.path import join, dirname

import numpy as np
from numpy.fft import fft as numfft
from numpy.testing import assert_array_almost_equal, assert_equal, TestCase

from scipy.fftpack.realtransforms import dct, idct

# Matlab reference data
MDATA = np.load(join(dirname(__file__), 'test.npz'))
X = [MDATA['x%d' % i] for i in range(8)]
Y = [MDATA['y%d' % i] for i in range(8)]

# FFTW reference data: the data are organized as follows:
#    * SIZES is an array containing all available sizes
#    * for every type (1, 2, 3, 4) and every size, the array dct_type_size
#    contains the output of the DCT applied to the input np.linspace(0, size-1,
#    size)
FFTWDATA_DOUBLE = np.load(join(dirname(__file__), 'fftw_double_ref.npz'))
FFTWDATA_SINGLE = np.load(join(dirname(__file__), 'fftw_single_ref.npz'))
FFTWDATA_SIZES = FFTWDATA_DOUBLE['sizes']

def fftw_ref(type, size, dt):
    x = np.linspace(0, size-1, size).astype(dt)
    if dt == np.double:
        data = FFTWDATA_DOUBLE
    elif dt == np.float32:
        data = FFTWDATA_SINGLE
    else:
        raise ValueError()
    y = (data['dct_%d_%d' % (type, size)]).astype(dt)
    return x, y

class _TestDCTBase(TestCase):
    def setUp(self):
        self.rdt = None
        self.dec = 14
        self.type = None

    def test_definition(self):
        for i in FFTWDATA_SIZES:
            x, yr = fftw_ref(self.type, i, self.rdt)
            y = dct(x, type=self.type)
            self.assertTrue(y.dtype == self.rdt,
                    "Output dtype is %s, expected %s" % (y.dtype, self.rdt))
            # XXX: we divide by np.max(y) because the tests fail otherwise. We
            # should really use something like assert_array_approx_equal. The
            # difference is due to fftw using a better algorithm w.r.t error
            # propagation compared to the ones from fftpack.
            assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
                    err_msg="Size %d failed" % i)

    def test_axis(self):
        nt = 2
        for i in [7, 8, 9, 16, 32, 64]:
            x = np.random.randn(nt, i)
            y = dct(x, type=self.type)
            for j in range(nt):
                assert_array_almost_equal(y[j], dct(x[j], type=self.type),
                        decimal=self.dec)

            x = x.T
            y = dct(x, axis=0, type=self.type)
            for j in range(nt):
                assert_array_almost_equal(y[:,j], dct(x[:,j], type=self.type),
                        decimal=self.dec)

class _TestDCTIIBase(_TestDCTBase):
    def test_definition_matlab(self):
        """Test correspondance with matlab (orthornomal mode)."""
        for i in range(len(X)):
            x = np.array(X[i], dtype=self.rdt)
            yr = Y[i]
            y = dct(x, norm="ortho", type=2)
            self.assertTrue(y.dtype == self.rdt,
                    "Output dtype is %s, expected %s" % (y.dtype, self.rdt))
            assert_array_almost_equal(y, yr, decimal=self.dec)

class _TestDCTIIIBase(_TestDCTBase):
    def test_definition_ortho(self):
        """Test orthornomal mode."""
        for i in range(len(X)):
            x = np.array(X[i], dtype=self.rdt)
            y = dct(x, norm='ortho', type=2)
            xi = dct(y, norm="ortho", type=3)
            self.assertTrue(xi.dtype == self.rdt,
                    "Output dtype is %s, expected %s" % (xi.dtype, self.rdt))
            assert_array_almost_equal(xi, x, decimal=self.dec)

class TestDCTIDouble(_TestDCTBase):
    def setUp(self):
        self.rdt = np.double
        self.dec = 10
        self.type = 1

class TestDCTIFloat(_TestDCTBase):
    def setUp(self):
        self.rdt = np.float32
        self.dec = 5
        self.type = 1

class TestDCTIIDouble(_TestDCTIIBase):
    def setUp(self):
        self.rdt = np.double
        self.dec = 10
        self.type = 2

class TestDCTIIFloat(_TestDCTIIBase):
    def setUp(self):
        self.rdt = np.float32
        self.dec = 5
        self.type = 2

class TestDCTIIIDouble(_TestDCTIIIBase):
    def setUp(self):
        self.rdt = np.double
        self.dec = 14
        self.type = 3

class TestDCTIIIFloat(_TestDCTIIIBase):
    def setUp(self):
        self.rdt = np.float32
        self.dec = 5
        self.type = 3

class _TestIDCTBase(TestCase):
    def setUp(self):
        self.rdt = None
        self.dec = 14
        self.type = None

    def test_definition(self):
        for i in FFTWDATA_SIZES:
            xr, yr = fftw_ref(self.type, i, self.rdt)
            y = dct(xr, type=self.type)
            x = idct(yr, type=self.type)
            if self.type == 1:
                x /= 2 * (i-1)
            else:
                x /= 2 * i
            self.assertTrue(x.dtype == self.rdt,
                    "Output dtype is %s, expected %s" % (x.dtype, self.rdt))
            # XXX: we divide by np.max(y) because the tests fail otherwise. We
            # should really use something like assert_array_approx_equal. The
            # difference is due to fftw using a better algorithm w.r.t error
            # propagation compared to the ones from fftpack.
            assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
                    err_msg="Size %d failed" % i)

class TestIDCTIDouble(_TestIDCTBase):
    def setUp(self):
        self.rdt = np.double
        self.dec = 10
        self.type = 1

class TestIDCTIFloat(_TestIDCTBase):
    def setUp(self):
        self.rdt = np.float32
        self.dec = 4
        self.type = 1

class TestIDCTIIDouble(_TestIDCTBase):
    def setUp(self):
        self.rdt = np.double
        self.dec = 10
        self.type = 2

class TestIDCTIIFloat(_TestIDCTBase):
    def setUp(self):
        self.rdt = np.float32
        self.dec = 5
        self.type = 2

class TestIDCTIIIDouble(_TestIDCTBase):
    def setUp(self):
        self.rdt = np.double
        self.dec = 14
        self.type = 3

class TestIDCTIIIFloat(_TestIDCTBase):
    def setUp(self):
        self.rdt = np.float32
        self.dec = 5
        self.type = 3

class TestOverwrite(object):
    """
    Check input overwrite behavior
    """

    real_dtypes = [np.float32, np.float64]

    def _check(self, x, routine, type, fftsize, axis, norm, overwrite_x,
               should_overwrite, **kw):
        x2 = x.copy()
        y = routine(x2, type, fftsize, axis, norm, overwrite_x=overwrite_x)

        sig = "%s(%s%r, %r, axis=%r, overwrite_x=%r)" % (
            routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
        if not should_overwrite:
            assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
        else:
            if (x2 == x).all():
                raise AssertionError("no overwrite in %s" % sig)

    def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes):
        np.random.seed(1234)
        if np.issubdtype(dtype, np.complexfloating):
            data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
        else:
            data = np.random.randn(*shape)
        data = data.astype(dtype)

        for type in [1, 2, 3]:
            for overwrite_x in [True, False]:
                for norm in [None, 'ortho']:
                    if type == 1 and norm == 'ortho':
                        continue

                    should_overwrite = (overwrite_x
                                        and dtype in overwritable_dtypes
                                        and (len(shape) == 1 or
                                             (axis % len(shape) == len(shape)-1
                                              )))
                    self._check(data, routine, type, None, axis, norm,
                                overwrite_x, should_overwrite)

    def test_dct(self):
        overwritable = self.real_dtypes
        for dtype in self.real_dtypes:
            self._check_1d(dct, dtype, (16,), -1, overwritable)
            self._check_1d(dct, dtype, (16, 2), 0, overwritable)
            self._check_1d(dct, dtype, (2, 16), 1, overwritable)

    def test_idct(self):
        overwritable = self.real_dtypes
        for dtype in self.real_dtypes:
            self._check_1d(idct, dtype, (16,), -1, overwritable)
            self._check_1d(idct, dtype, (16, 2), 0, overwritable)
            self._check_1d(idct, dtype, (2, 16), 1, overwritable)

if __name__ == "__main__":
    np.testing.run_module_suite()