1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
#!/usr/bin/env python
from os.path import join, dirname
import numpy as np
from numpy.fft import fft as numfft
from numpy.testing import assert_array_almost_equal, assert_equal, TestCase
from scipy.fftpack.realtransforms import dct, idct
# Matlab reference data
MDATA = np.load(join(dirname(__file__), 'test.npz'))
X = [MDATA['x%d' % i] for i in range(8)]
Y = [MDATA['y%d' % i] for i in range(8)]
# FFTW reference data: the data are organized as follows:
# * SIZES is an array containing all available sizes
# * for every type (1, 2, 3, 4) and every size, the array dct_type_size
# contains the output of the DCT applied to the input np.linspace(0, size-1,
# size)
FFTWDATA_DOUBLE = np.load(join(dirname(__file__), 'fftw_double_ref.npz'))
FFTWDATA_SINGLE = np.load(join(dirname(__file__), 'fftw_single_ref.npz'))
FFTWDATA_SIZES = FFTWDATA_DOUBLE['sizes']
def fftw_ref(type, size, dt):
x = np.linspace(0, size-1, size).astype(dt)
if dt == np.double:
data = FFTWDATA_DOUBLE
elif dt == np.float32:
data = FFTWDATA_SINGLE
else:
raise ValueError()
y = (data['dct_%d_%d' % (type, size)]).astype(dt)
return x, y
class _TestDCTBase(TestCase):
def setUp(self):
self.rdt = None
self.dec = 14
self.type = None
def test_definition(self):
for i in FFTWDATA_SIZES:
x, yr = fftw_ref(self.type, i, self.rdt)
y = dct(x, type=self.type)
self.assertTrue(y.dtype == self.rdt,
"Output dtype is %s, expected %s" % (y.dtype, self.rdt))
# XXX: we divide by np.max(y) because the tests fail otherwise. We
# should really use something like assert_array_approx_equal. The
# difference is due to fftw using a better algorithm w.r.t error
# propagation compared to the ones from fftpack.
assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
err_msg="Size %d failed" % i)
def test_axis(self):
nt = 2
for i in [7, 8, 9, 16, 32, 64]:
x = np.random.randn(nt, i)
y = dct(x, type=self.type)
for j in range(nt):
assert_array_almost_equal(y[j], dct(x[j], type=self.type),
decimal=self.dec)
x = x.T
y = dct(x, axis=0, type=self.type)
for j in range(nt):
assert_array_almost_equal(y[:,j], dct(x[:,j], type=self.type),
decimal=self.dec)
class _TestDCTIIBase(_TestDCTBase):
def test_definition_matlab(self):
"""Test correspondance with matlab (orthornomal mode)."""
for i in range(len(X)):
x = np.array(X[i], dtype=self.rdt)
yr = Y[i]
y = dct(x, norm="ortho", type=2)
self.assertTrue(y.dtype == self.rdt,
"Output dtype is %s, expected %s" % (y.dtype, self.rdt))
assert_array_almost_equal(y, yr, decimal=self.dec)
class _TestDCTIIIBase(_TestDCTBase):
def test_definition_ortho(self):
"""Test orthornomal mode."""
for i in range(len(X)):
x = np.array(X[i], dtype=self.rdt)
y = dct(x, norm='ortho', type=2)
xi = dct(y, norm="ortho", type=3)
self.assertTrue(xi.dtype == self.rdt,
"Output dtype is %s, expected %s" % (xi.dtype, self.rdt))
assert_array_almost_equal(xi, x, decimal=self.dec)
class TestDCTIDouble(_TestDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 1
class TestDCTIFloat(_TestDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 1
class TestDCTIIDouble(_TestDCTIIBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 2
class TestDCTIIFloat(_TestDCTIIBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 2
class TestDCTIIIDouble(_TestDCTIIIBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 3
class TestDCTIIIFloat(_TestDCTIIIBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 3
class _TestIDCTBase(TestCase):
def setUp(self):
self.rdt = None
self.dec = 14
self.type = None
def test_definition(self):
for i in FFTWDATA_SIZES:
xr, yr = fftw_ref(self.type, i, self.rdt)
y = dct(xr, type=self.type)
x = idct(yr, type=self.type)
if self.type == 1:
x /= 2 * (i-1)
else:
x /= 2 * i
self.assertTrue(x.dtype == self.rdt,
"Output dtype is %s, expected %s" % (x.dtype, self.rdt))
# XXX: we divide by np.max(y) because the tests fail otherwise. We
# should really use something like assert_array_approx_equal. The
# difference is due to fftw using a better algorithm w.r.t error
# propagation compared to the ones from fftpack.
assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
err_msg="Size %d failed" % i)
class TestIDCTIDouble(_TestIDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 1
class TestIDCTIFloat(_TestIDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 4
self.type = 1
class TestIDCTIIDouble(_TestIDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 2
class TestIDCTIIFloat(_TestIDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 2
class TestIDCTIIIDouble(_TestIDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 3
class TestIDCTIIIFloat(_TestIDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 3
class TestOverwrite(object):
"""
Check input overwrite behavior
"""
real_dtypes = [np.float32, np.float64]
def _check(self, x, routine, type, fftsize, axis, norm, overwrite_x,
should_overwrite, **kw):
x2 = x.copy()
y = routine(x2, type, fftsize, axis, norm, overwrite_x=overwrite_x)
sig = "%s(%s%r, %r, axis=%r, overwrite_x=%r)" % (
routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
if not should_overwrite:
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
else:
if (x2 == x).all():
raise AssertionError("no overwrite in %s" % sig)
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes):
np.random.seed(1234)
if np.issubdtype(dtype, np.complexfloating):
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
else:
data = np.random.randn(*shape)
data = data.astype(dtype)
for type in [1, 2, 3]:
for overwrite_x in [True, False]:
for norm in [None, 'ortho']:
if type == 1 and norm == 'ortho':
continue
should_overwrite = (overwrite_x
and dtype in overwritable_dtypes
and (len(shape) == 1 or
(axis % len(shape) == len(shape)-1
)))
self._check(data, routine, type, None, axis, norm,
overwrite_x, should_overwrite)
def test_dct(self):
overwritable = self.real_dtypes
for dtype in self.real_dtypes:
self._check_1d(dct, dtype, (16,), -1, overwritable)
self._check_1d(dct, dtype, (16, 2), 0, overwritable)
self._check_1d(dct, dtype, (2, 16), 1, overwritable)
def test_idct(self):
overwritable = self.real_dtypes
for dtype in self.real_dtypes:
self._check_1d(idct, dtype, (16,), -1, overwritable)
self._check_1d(idct, dtype, (16, 2), 0, overwritable)
self._check_1d(idct, dtype, (2, 16), 1, overwritable)
if __name__ == "__main__":
np.testing.run_module_suite()
|