File: zgbfa.f

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (181 lines) | stat: -rw-r--r-- 5,479 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
      subroutine zgbfa(abd,lda,n,ml,mu,ipvt,info)
      integer lda,n,ml,mu,ipvt(1),info
      complex*16 abd(lda,1)
c
c     zgbfa factors a complex*16 band matrix by elimination.
c
c     zgbfa is usually called by zgbco, but it can be called
c     directly with a saving in time if  rcond  is not needed.
c
c     on entry
c
c        abd     complex*16(lda, n)
c                contains the matrix in band storage.  the columns
c                of the matrix are stored in the columns of  abd  and
c                the diagonals of the matrix are stored in rows
c                ml+1 through 2*ml+mu+1 of  abd .
c                see the comments below for details.
c
c        lda     integer
c                the leading dimension of the array  abd .
c                lda must be .ge. 2*ml + mu + 1 .
c
c        n       integer
c                the order of the original matrix.
c
c        ml      integer
c                number of diagonals below the main diagonal.
c                0 .le. ml .lt. n .
c
c        mu      integer
c                number of diagonals above the main diagonal.
c                0 .le. mu .lt. n .
c                more efficient if  ml .le. mu .
c     on return
c
c        abd     an upper triangular matrix in band storage and
c                the multipliers which were used to obtain it.
c                the factorization can be written  a = l*u  where
c                l  is a product of permutation and unit lower
c                triangular matrices and  u  is upper triangular.
c
c        ipvt    integer(n)
c                an integer vector of pivot indices.
c
c        info    integer
c                = 0  normal value.
c                = k  if  u(k,k) .eq. 0.0 .  this is not an error
c                     condition for this subroutine, but it does
c                     indicate that zgbsl will divide by zero if
c                     called.  use  rcond  in zgbco for a reliable
c                     indication of singularity.
c
c     band storage
c
c           if  a  is a band matrix, the following program segment
c           will set up the input.
c
c                   ml = (band width below the diagonal)
c                   mu = (band width above the diagonal)
c                   m = ml + mu + 1
c                   do 20 j = 1, n
c                      i1 = max0(1, j-mu)
c                      i2 = min0(n, j+ml)
c                      do 10 i = i1, i2
c                         k = i - j + m
c                         abd(k,j) = a(i,j)
c                10    continue
c                20 continue
c
c           this uses rows  ml+1  through  2*ml+mu+1  of  abd .
c           in addition, the first  ml  rows in  abd  are used for
c           elements generated during the triangularization.
c           the total number of rows needed in  abd  is  2*ml+mu+1 .
c           the  ml+mu by ml+mu  upper left triangle and the
c           ml by ml  lower right triangle are not referenced.
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas zaxpy,zscal,izamax
c     fortran dabs,max0,min0
c
c     internal variables
c
      complex*16 t
      integer i,izamax,i0,j,ju,jz,j0,j1,k,kp1,l,lm,m,mm,nm1
c
      complex*16 zdum
      double precision cabs1
      double precision dreal,dimag
      complex*16 zdumr,zdumi
      dreal(zdumr) = zdumr
      dimag(zdumi) = (0.0d0,-1.0d0)*zdumi
      cabs1(zdum) = dabs(dreal(zdum)) + dabs(dimag(zdum))
c
      m = ml + mu + 1
      info = 0
c
c     zero initial fill-in columns
c
      j0 = mu + 2
      j1 = min0(n,m) - 1
      if (j1 .lt. j0) go to 30
      do 20 jz = j0, j1
         i0 = m + 1 - jz
         do 10 i = i0, ml
            abd(i,jz) = (0.0d0,0.0d0)
   10    continue
   20 continue
   30 continue
      jz = j1
      ju = 0
c
c     gaussian elimination with partial pivoting
c
      nm1 = n - 1
      if (nm1 .lt. 1) go to 130
      do 120 k = 1, nm1
         kp1 = k + 1
c
c        zero next fill-in column
c
         jz = jz + 1
         if (jz .gt. n) go to 50
         if (ml .lt. 1) go to 50
            do 40 i = 1, ml
               abd(i,jz) = (0.0d0,0.0d0)
   40       continue
   50    continue
c
c        find l = pivot index
c
         lm = min0(ml,n-k)
         l = izamax(lm+1,abd(m,k),1) + m - 1
         ipvt(k) = l + k - m
c
c        zero pivot implies this column already triangularized
c
         if (cabs1(abd(l,k)) .eq. 0.0d0) go to 100
c
c           interchange if necessary
c
            if (l .eq. m) go to 60
               t = abd(l,k)
               abd(l,k) = abd(m,k)
               abd(m,k) = t
   60       continue
c
c           compute multipliers
c
            t = -(1.0d0,0.0d0)/abd(m,k)
            call zscal(lm,t,abd(m+1,k),1)
c
c           row elimination with column indexing
c
            ju = min0(max0(ju,mu+ipvt(k)),n)
            mm = m
            if (ju .lt. kp1) go to 90
            do 80 j = kp1, ju
               l = l - 1
               mm = mm - 1
               t = abd(l,j)
               if (l .eq. mm) go to 70
                  abd(l,j) = abd(mm,j)
                  abd(mm,j) = t
   70          continue
               call zaxpy(lm,t,abd(m+1,k),1,abd(mm+1,j),1)
   80       continue
   90       continue
         go to 110
  100    continue
            info = k
  110    continue
  120 continue
  130 continue
      ipvt(n) = n
      if (cabs1(abd(m,n)) .eq. 0.0d0) info = n
      return
      end