1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
|
#!/usr/bin/env python
"""
fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx).
FITPACK is a collection of FORTRAN programs for curve and surface
fitting with splines and tensor product splines.
See
http://www.cs.kuleuven.ac.be/cwis/research/nalag/research/topics/fitpack.html
or
http://www.netlib.org/dierckx/index.html
Copyright 2002 Pearu Peterson all rights reserved,
Pearu Peterson <pearu@cens.ioc.ee>
Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
this distribution for specifics.
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
Pearu Peterson
Running test programs:
$ python fitpack.py 1 3 # run test programs 1, and 3
$ python fitpack.py # run all available test programs
TODO: Make interfaces to the following fitpack functions:
For univariate splines: cocosp, concon, fourco, insert
For bivariate splines: profil, regrid, parsur, surev
"""
__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde',
'bisplrep', 'bisplev', 'insert']
__version__ = "$Revision$"[10:-1]
import _fitpack
from numpy import atleast_1d, array, ones, zeros, sqrt, ravel, transpose, \
dot, sin, cos, pi, arange, empty, int32
myasarray = atleast_1d
# Try to replace _fitpack interface with
# f2py-generated version
import dfitpack
_iermess = {0:["""\
The spline has a residual sum of squares fp such that abs(fp-s)/s<=0.001""",None],
-1:["""\
The spline is an interpolating spline (fp=0)""",None],
-2:["""\
The spline is weighted least-squares polynomial of degree k.
fp gives the upper bound fp0 for the smoothing factor s""",None],
1:["""\
The required storage space exceeds the available storage space.
Probable causes: data (x,y) size is too small or smoothing parameter s is too small (fp>s).""",ValueError],
2:["""\
A theoretically impossible results when finding a smoothin spline
with fp = s. Probably causes: s too small. (abs(fp-s)/s>0.001)""",ValueError],
3:["""\
The maximal number of iterations (20) allowed for finding smoothing
spline with fp=s has been reached. Probably causes: s too small.
(abs(fp-s)/s>0.001)""",ValueError],
10:["""\
Error on input data""",ValueError],
'unknown':["""\
An error occurred""",TypeError]}
_iermess2 = {0:["""\
The spline has a residual sum of squares fp such that abs(fp-s)/s<=0.001""",None],
-1:["""\
The spline is an interpolating spline (fp=0)""",None],
-2:["""\
The spline is weighted least-squares polynomial of degree kx and ky.
fp gives the upper bound fp0 for the smoothing factor s""",None],
-3:["""\
Warning. The coefficients of the spline have been computed as the minimal
norm least-squares solution of a rank deficient system.""",None],
1:["""\
The required storage space exceeds the available storage space.
Probably causes: nxest or nyest too small or s is too small. (fp>s)""",ValueError],
2:["""\
A theoretically impossible results when finding a smoothin spline
with fp = s. Probably causes: s too small or badly chosen eps.
(abs(fp-s)/s>0.001)""",ValueError],
3:["""\
The maximal number of iterations (20) allowed for finding smoothing
spline with fp=s has been reached. Probably causes: s too small.
(abs(fp-s)/s>0.001)""",ValueError],
4:["""\
No more knots can be added because the number of B-spline coefficients
already exceeds the number of data points m. Probably causes: either
s or m too small. (fp>s)""",ValueError],
5:["""\
No more knots can be added because the additional knot would coincide
with an old one. Probably cause: s too small or too large a weight
to an inaccurate data point. (fp>s)""",ValueError],
10:["""\
Error on input data""",ValueError],
11:["""\
rwrk2 too small, i.e. there is not enough workspace for computing
the minimal least-squares solution of a rank deficient system of linear
equations.""",ValueError],
'unknown':["""\
An error occurred""",TypeError]}
_parcur_cache = {'t': array([],float), 'wrk': array([],float),
'iwrk':array([],int32), 'u': array([],float),'ub':0,'ue':1}
def splprep(x,w=None,u=None,ub=None,ue=None,k=3,task=0,s=None,t=None,
full_output=0,nest=None,per=0,quiet=1):
"""
Find the B-spline representation of an N-dimensional curve.
Given a list of N rank-1 arrays, x, which represent a curve in
N-dimensional space parametrized by u, find a smooth approximating
spline curve g(u). Uses the FORTRAN routine parcur from FITPACK.
Parameters
----------
x : array_like
A list of sample vector arrays representing the curve.
u : array_like, optional
An array of parameter values. If not given, these values are
calculated automatically as ``M = len(x[0])``:
v[0] = 0
v[i] = v[i-1] + distance(x[i],x[i-1])
u[i] = v[i] / v[M-1]
ub, ue : int, optional
The end-points of the parameters interval. Defaults to
u[0] and u[-1].
k : int, optional
Degree of the spline. Cubic splines are recommended.
Even values of `k` should be avoided especially with a small s-value.
``1 <= k <= 5``, default is 3.
task : int, optional
If task==0 (default), find t and c for a given smoothing factor, s.
If task==1, find t and c for another value of the smoothing factor, s.
There must have been a previous call with task=0 or task=1
for the same set of data.
If task=-1 find the weighted least square spline for a given set of
knots, t.
s : float, optional
A smoothing condition.
The amount of smoothness is determined by
satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``,
where g(x) is the smoothed interpolation of (x,y). The user can
use `s` to control the trade-off between closeness and smoothness
of fit. Larger `s` means more smoothing while smaller values of `s`
indicate less smoothing. Recommended values of `s` depend on the
weights, w. If the weights represent the inverse of the
standard-deviation of y, then a good `s` value should be found in
the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of
data points in x, y, and w.
t : int, optional
The knots needed for task=-1.
full_output : int, optional
If non-zero, then return optional outputs.
nest : int, optional
An over-estimate of the total number of knots of the spline to
help in determining the storage space. By default nest=m/2.
Always large enough is nest=m+k+1.
per : int, optional
If non-zero, data points are considered periodic with period
x[m-1] - x[0] and a smooth periodic spline approximation is returned.
Values of y[m-1] and w[m-1] are not used.
quiet : int, optional
Non-zero to suppress messages.
Returns
-------
tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline
coefficients, and the degree of the spline.
u : array
An array of the values of the parameter.
fp : float
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated
if ier<=0. If ier in [1,2,3] an error occurred but was not raised.
Otherwise an error is raised.
msg : str
A message corresponding to the integer flag, ier.
See Also
--------
splrep, splev, sproot, spalde, splint,
bisplrep, bisplev
UnivariateSpline, BivariateSpline
Notes
-----
See `splev` for evaluation of the spline and its derivatives.
References
----------
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines, Computer Graphics and Image Processing",
20 (1982) 171-184.
.. [2] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines", report tw55, Dept. Computer Science,
K.U.Leuven, 1981.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
"""
if task<=0:
_parcur_cache = {'t': array([],float), 'wrk': array([],float),
'iwrk':array([],int32),'u': array([],float),
'ub':0,'ue':1}
x=myasarray(x)
idim,m=x.shape
if per:
for i in range(idim):
if x[i][0]!=x[i][-1]:
if quiet<2:print 'Warning: Setting x[%d][%d]=x[%d][0]'%(i,m,i)
x[i][-1]=x[i][0]
if not 0 < idim < 11:
raise TypeError('0 < idim < 11 must hold')
if w is None:
w = ones(m, float)
else:
w = myasarray(w)
ipar = (u is not None)
if ipar:
_parcur_cache['u']=u
if ub is None: _parcur_cache['ub']=u[0]
else: _parcur_cache['ub']=ub
if ue is None: _parcur_cache['ue']=u[-1]
else: _parcur_cache['ue']=ue
else: _parcur_cache['u']=zeros(m,float)
if not (1 <= k <= 5):
raise TypeError('1 <= k= %d <=5 must hold' % k)
if not (-1 <= task <=1):
raise TypeError('task must be -1, 0 or 1')
if (not len(w)==m) or (ipar==1 and (not len(u)==m)):
raise TypeError('Mismatch of input dimensions')
if s is None: s=m-sqrt(2*m)
if t is None and task == -1:
raise TypeError('Knots must be given for task=-1')
if t is not None:
_parcur_cache['t']=myasarray(t)
n=len(_parcur_cache['t'])
if task==-1 and n<2*k+2:
raise TypeError('There must be at least 2*k+2 knots for task=-1')
if m <= k:
raise TypeError('m > k must hold')
if nest is None: nest=m+2*k
if (task>=0 and s==0) or (nest<0):
if per: nest=m+2*k
else: nest=m+k+1
nest=max(nest,2*k+3)
u=_parcur_cache['u']
ub=_parcur_cache['ub']
ue=_parcur_cache['ue']
t=_parcur_cache['t']
wrk=_parcur_cache['wrk']
iwrk=_parcur_cache['iwrk']
t,c,o=_fitpack._parcur(ravel(transpose(x)),w,u,ub,ue,k,task,ipar,s,t,
nest,wrk,iwrk,per)
_parcur_cache['u']=o['u']
_parcur_cache['ub']=o['ub']
_parcur_cache['ue']=o['ue']
_parcur_cache['t']=t
_parcur_cache['wrk']=o['wrk']
_parcur_cache['iwrk']=o['iwrk']
ier,fp,n=o['ier'],o['fp'],len(t)
u=o['u']
c.shape=idim,n-k-1
tcku = [t,list(c),k],u
if ier<=0 and not quiet:
print _iermess[ier][0]
print "\tk=%d n=%d m=%d fp=%f s=%f"%(k,len(t),m,fp,s)
if ier>0 and not full_output:
if ier in [1,2,3]:
print "Warning: "+_iermess[ier][0]
else:
try:
raise _iermess[ier][1](_iermess[ier][0])
except KeyError:
raise _iermess['unknown'][1](_iermess['unknown'][0])
if full_output:
try:
return tcku,fp,ier,_iermess[ier][0]
except KeyError:
return tcku,fp,ier,_iermess['unknown'][0]
else:
return tcku
_curfit_cache = {'t': array([],float), 'wrk': array([],float),
'iwrk':array([],int32)}
def splrep(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None,
full_output=0,per=0,quiet=1):
"""
Find the B-spline representation of 1-D curve.
Given the set of data points (x[i], y[i]) determine a smooth spline
approximation of degree k on the interval xb <= x <= xe. The coefficients,
c, and the knot points, t, are returned. Uses the FORTRAN routine
curfit from FITPACK.
Parameters
----------
x, y : array_like
The data points defining a curve y = f(x).
w : array_like
Strictly positive rank-1 array of weights the same length as x and y.
The weights are used in computing the weighted least-squares spline
fit. If the errors in the y values have standard-deviation given by the
vector d, then w should be 1/d. Default is ones(len(x)).
xb, xe : float
The interval to fit. If None, these default to x[0] and x[-1]
respectively.
k : int
The order of the spline fit. It is recommended to use cubic splines.
Even order splines should be avoided especially with small s values.
1 <= k <= 5
task : {1, 0, -1}
If task==0 find t and c for a given smoothing factor, s.
If task==1 find t and c for another value of the smoothing factor, s.
There must have been a previous call with task=0 or task=1 for the same
set of data (t will be stored an used internally)
If task=-1 find the weighted least square spline for a given set of
knots, t. These should be interior knots as knots on the ends will be
added automatically.
s : float
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x)
is the smoothed interpolation of (x,y). The user can use s to control
the tradeoff between closeness and smoothness of fit. Larger s means
more smoothing while smaller values of s indicate less smoothing.
Recommended values of s depend on the weights, w. If the weights
represent the inverse of the standard-deviation of y, then a good s
value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is
the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if
weights are supplied. s = 0.0 (interpolating) if no weights are
supplied.
t : int
The knots needed for task=-1. If given then task is automatically set
to -1.
full_output : bool
If non-zero, then return optional outputs.
per : bool
If non-zero, data points are considered periodic with period x[m-1] -
x[0] and a smooth periodic spline approximation is returned. Values of
y[m-1] and w[m-1] are not used.
quiet : bool
Non-zero to suppress messages.
Returns
-------
tck : tuple
(t,c,k) a tuple containing the vector of knots, the B-spline
coefficients, and the degree of the spline.
fp : array, optional
The weighted sum of squared residuals of the spline approximation.
ier : int, optional
An integer flag about splrep success. Success is indicated if ier<=0.
If ier in [1,2,3] an error occurred but was not raised. Otherwise an
error is raised.
msg : str, optional
A message corresponding to the integer flag, ier.
Notes
-----
See splev for evaluation of the spline and its derivatives.
See Also
--------
UnivariateSpline, BivariateSpline
splprep, splev, sproot, spalde, splint
bisplrep, bisplev
References
----------
Based on algorithms described in [1], [2], [3], and [4]:
.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
integration of experimental data using spline functions",
J.Comp.Appl.Maths 1 (1975) 165-184.
.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
1286-1304.
.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
Examples
--------
>>> x = linspace(0, 10, 10)
>>> y = sin(x)
>>> tck = splrep(x, y)
>>> x2 = linspace(0, 10, 200)
>>> y2 = splev(x2, tck)
>>> plot(x, y, 'o', x2, y2)
"""
if task<=0:
_curfit_cache = {}
x,y=map(myasarray,[x,y])
m=len(x)
if w is None:
w=ones(m,float)
if s is None: s = 0.0
else:
w=myasarray(w)
if s is None: s = m-sqrt(2*m)
if not len(w) == m:
raise TypeError('len(w)=%d is not equal to m=%d' % (len(w),m))
if (m != len(y)) or (m != len(w)):
raise TypeError('Lengths of the first three arguments (x,y,w) must be equal')
if not (1 <= k <= 5):
raise TypeError('Given degree of the spline (k=%d) is not supported. (1<=k<=5)' % k)
if m <= k:
raise TypeError('m > k must hold')
if xb is None: xb=x[0]
if xe is None: xe=x[-1]
if not (-1 <= task <= 1):
raise TypeError('task must be -1, 0 or 1')
if t is not None:
task = -1
if task == -1:
if t is None:
raise TypeError('Knots must be given for task=-1')
numknots = len(t)
_curfit_cache['t'] = empty((numknots + 2*k+2,),float)
_curfit_cache['t'][k+1:-k-1] = t
nest = len(_curfit_cache['t'])
elif task == 0:
if per:
nest = max(m+2*k,2*k+3)
else:
nest = max(m+k+1,2*k+3)
t = empty((nest,),float)
_curfit_cache['t'] = t
if task <= 0:
if per: _curfit_cache['wrk'] = empty((m*(k+1)+nest*(8+5*k),),float)
else: _curfit_cache['wrk'] = empty((m*(k+1)+nest*(7+3*k),),float)
_curfit_cache['iwrk'] = empty((nest,),int32)
try:
t=_curfit_cache['t']
wrk=_curfit_cache['wrk']
iwrk=_curfit_cache['iwrk']
except KeyError:
raise TypeError("must call with task=1 only after"
" call with task=0,-1")
if not per:
n,c,fp,ier = dfitpack.curfit(task, x, y, w, t, wrk, iwrk, xb, xe, k, s)
else:
n,c,fp,ier = dfitpack.percur(task, x, y, w, t, wrk, iwrk, k, s)
tck = (t[:n],c[:n],k)
if ier<=0 and not quiet:
print _iermess[ier][0]
print "\tk=%d n=%d m=%d fp=%f s=%f"%(k,len(t),m,fp,s)
if ier>0 and not full_output:
if ier in [1,2,3]:
print "Warning: "+_iermess[ier][0]
else:
try:
raise _iermess[ier][1](_iermess[ier][0])
except KeyError:
raise _iermess['unknown'][1](_iermess['unknown'][0])
if full_output:
try:
return tck,fp,ier,_iermess[ier][0]
except KeyError:
return tck,fp,ier,_iermess['unknown'][0]
else:
return tck
def _ntlist(l): # return non-trivial list
return l
#if len(l)>1: return l
#return l[0]
def splev(x, tck, der=0, ext=0):
"""
Evaluate a B-spline or its derivatives.
Given the knots and coefficients of a B-spline representation, evaluate
the value of the smoothing polynomial and its derivatives. This is a
wrapper around the FORTRAN routines splev and splder of FITPACK.
Parameters
----------
x : array_like
A 1-D array of points at which to return the value of the smoothed
spline or its derivatives. If `tck` was returned from `splprep`,
then the parameter values, u should be given.
tck : tuple
A sequence of length 3 returned by `splrep` or `splprep` containing
the knots, coefficients, and degree of the spline.
der : int
The order of derivative of the spline to compute (must be less than
or equal to k).
ext : int
Controls the value returned for elements of ``x`` not in the
interval defined by the knot sequence.
* if ext=0, return the extrapolated value.
* if ext=1, return 0
* if ext=2, raise a ValueError
The default value is 0.
Returns
-------
y : ndarray or list of ndarrays
An array of values representing the spline function evaluated at
the points in ``x``. If `tck` was returned from splrep, then this
is a list of arrays representing the curve in N-dimensional space.
See Also
--------
splprep, splrep, sproot, spalde, splint
bisplrep, bisplev
References
----------
.. [1] C. de Boor, "On calculating with b-splines", J. Approximation
Theory, 6, p.50-62, 1972.
.. [2] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
Applics, 10, p.134-149, 1972.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
on Numerical Analysis, Oxford University Press, 1993.
"""
t,c,k = tck
try:
c[0][0]
parametric = True
except:
parametric = False
if parametric:
return map(lambda c, x=x, t=t, k=k, der=der : splev(x, [t,c,k], der), c)
else:
if not (0 <= der <= k):
raise ValueError("0<=der=%d<=k=%d must hold"%(der,k))
if not ext in (0,1,2):
raise ValueError("ext not in (0, 1, 2)")
x = myasarray(x)
y, ier =_fitpack._spl_(x, der, t, c, k, ext)
if ier == 10:
raise ValueError("Invalid input data")
if ier == 1:
raise ValueError("Found x value not in the domain")
if ier:
raise TypeError("An error occurred")
if len(y) > 1:
return y
return y[0]
def splint(a,b,tck,full_output=0):
"""
Evaluate the definite integral of a B-spline.
Given the knots and coefficients of a B-spline, evaluate the definite
integral of the smoothing polynomial between two given points.
Parameters
----------
a, b : float
The end-points of the integration interval.
tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline
coefficients, and the degree of the spline (see `splev`).
full_output : int, optional
Non-zero to return optional output.
Returns
-------
integral : float
The resulting integral.
wrk : ndarray
An array containing the integrals of the normalized B-splines
defined on the set of knots.
See Also
--------
splprep, splrep, sproot, spalde, splev
bisplrep, bisplev
UnivariateSpline, BivariateSpline
References
----------
.. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines",
J. Inst. Maths Applics, 17, p.37-41, 1976.
.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs
on Numerical Analysis, Oxford University Press, 1993.
"""
t,c,k=tck
try:
c[0][0]
parametric = True
except:
parametric = False
if parametric:
return _ntlist(map(lambda c,a=a,b=b,t=t,k=k:splint(a,b,[t,c,k]),c))
else:
aint,wrk=_fitpack._splint(t,c,k,a,b)
if full_output: return aint,wrk
else: return aint
def sproot(tck,mest=10):
"""
Find the roots of a cubic B-spline.
Given the knots (>=8) and coefficients of a cubic B-spline return the
roots of the spline.
Parameters
----------
tck : tuple
A tuple (t,c,k) containing the vector of knots,
the B-spline coefficients, and the degree of the spline.
The number of knots must be >= 8.
The knots must be a montonically increasing sequence.
mest : int
An estimate of the number of zeros (Default is 10).
Returns
-------
zeros : ndarray
An array giving the roots of the spline.
See also
--------
splprep, splrep, splint, spalde, splev
bisplrep, bisplev
UnivariateSpline, BivariateSpline
References
----------
.. [1] C. de Boor, "On calculating with b-splines", J. Approximation
Theory, 6, p.50-62, 1972.
.. [2] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
Applics, 10, p.134-149, 1972.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
on Numerical Analysis, Oxford University Press, 1993.
"""
t,c,k=tck
if k==4: t=t[1:-1]
if k==5: t=t[2:-2]
try:
c[0][0]
parametric = True
except:
parametric = False
if parametric:
return _ntlist(map(lambda c,t=t,k=k,mest=mest:sproot([t,c,k],mest),c))
else:
if len(t)<8:
raise TypeError("The number of knots %d>=8" % len(t))
z,ier=_fitpack._sproot(t,c,k,mest)
if ier==10:
raise TypeError("Invalid input data. t1<=..<=t4<t5<..<tn-3<=..<=tn must hold.")
if ier==0: return z
if ier==1:
print "Warning: the number of zeros exceeds mest"
return z
raise TypeError("Unknown error")
def spalde(x,tck):
"""
Evaluate all derivatives of a B-spline.
Given the knots and coefficients of a cubic B-spline compute all
derivatives up to order k at a point (or set of points).
Parameters
----------
tck : tuple
A tuple (t,c,k) containing the vector of knots,
the B-spline coefficients, and the degree of the spline.
x : array_like
A point or a set of points at which to evaluate the derivatives.
Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`.
Returns
-------
results : array_like
An array (or a list of arrays) containing all derivatives
up to order k inclusive for each point x.
See Also
--------
splprep, splrep, splint, sproot, splev, bisplrep, bisplev,
UnivariateSpline, BivariateSpline
References
----------
.. [1] de Boor C : On calculating with b-splines, J. Approximation Theory
6 (1972) 50-62.
.. [2] Cox M.G. : The numerical evaluation of b-splines, J. Inst. Maths
applics 10 (1972) 134-149.
.. [3] Dierckx P. : Curve and surface fitting with splines, Monographs on
Numerical Analysis, Oxford University Press, 1993.
"""
t,c,k=tck
try:
c[0][0]
parametric = True
except:
parametric = False
if parametric:
return _ntlist(map(lambda c,x=x,t=t,k=k:spalde(x,[t,c,k]),c))
else:
x = myasarray(x)
if len(x)>1:
return map(lambda x,tck=tck:spalde(x,tck),x)
d,ier=_fitpack._spalde(t,c,k,x[0])
if ier==0: return d
if ier==10:
raise TypeError("Invalid input data. t(k)<=x<=t(n-k+1) must hold.")
raise TypeError("Unknown error")
#def _curfit(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None,
# full_output=0,nest=None,per=0,quiet=1):
_surfit_cache = {'tx': array([],float),'ty': array([],float),
'wrk': array([],float), 'iwrk':array([],int32)}
def bisplrep(x,y,z,w=None,xb=None,xe=None,yb=None,ye=None,kx=3,ky=3,task=0,
s=None,eps=1e-16,tx=None,ty=None,full_output=0,
nxest=None,nyest=None,quiet=1):
"""
Find a bivariate B-spline representation of a surface.
Given a set of data points (x[i], y[i], z[i]) representing a surface
z=f(x,y), compute a B-spline representation of the surface. Based on
the routine SURFIT from FITPACK.
Parameters
----------
x, y, z : ndarray
Rank-1 arrays of data points.
w : ndarray, optional
Rank-1 array of weights. By default ``w=np.ones(len(x))``.
xb, xe : float, optional
End points of approximation interval in `x`.
By default ``xb = x.min(), xe=x.max()``.
yb, ye : float, optional
End points of approximation interval in `y`.
By default ``yb=y.min(), ye = y.max()``.
kx, ky : int, optional
The degrees of the spline (1 <= kx, ky <= 5).
Third order (kx=ky=3) is recommended.
task : int, optional
If task=0, find knots in x and y and coefficients for a given
smoothing factor, s.
If task=1, find knots and coefficients for another value of the
smoothing factor, s. bisplrep must have been previously called
with task=0 or task=1.
If task=-1, find coefficients for a given set of knots tx, ty.
s : float, optional
A non-negative smoothing factor. If weights correspond
to the inverse of the standard-deviation of the errors in z,
then a good s-value should be found in the range
``(m-sqrt(2*m),m+sqrt(2*m))`` where m=len(x).
eps : float, optional
A threshold for determining the effective rank of an
over-determined linear system of equations (0 < eps < 1).
`eps` is not likely to need changing.
tx, ty : ndarray, optional
Rank-1 arrays of the knots of the spline for task=-1
full_output : int, optional
Non-zero to return optional outputs.
nxest, nyest : int, optional
Over-estimates of the total number of knots. If None then
``nxest = max(kx+sqrt(m/2),2*kx+3)``,
``nyest = max(ky+sqrt(m/2),2*ky+3)``.
quiet : int, optional
Non-zero to suppress printing of messages.
Returns
-------
tck : array_like
A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
coefficients (c) of the bivariate B-spline representation of the
surface along with the degree of the spline.
fp : ndarray
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated if
ier<=0. If ier in [1,2,3] an error occurred but was not raised.
Otherwise an error is raised.
msg : str
A message corresponding to the integer flag, ier.
See Also
--------
splprep, splrep, splint, sproot, splev
UnivariateSpline, BivariateSpline
Notes
-----
See `bisplev` to evaluate the value of the B-spline given its tck
representation.
References
----------
.. [1] Dierckx P.:An algorithm for surface fitting with spline functions
Ima J. Numer. Anal. 1 (1981) 267-283.
.. [2] Dierckx P.:An algorithm for surface fitting with spline functions
report tw50, Dept. Computer Science,K.U.Leuven, 1980.
.. [3] Dierckx P.:Curve and surface fitting with splines, Monographs on
Numerical Analysis, Oxford University Press, 1993.
"""
x,y,z=map(myasarray,[x,y,z])
x,y,z=map(ravel,[x,y,z]) # ensure 1-d arrays.
m=len(x)
if not (m==len(y)==len(z)):
raise TypeError('len(x)==len(y)==len(z) must hold.')
if w is None: w=ones(m,float)
else: w=myasarray(w)
if not len(w) == m:
raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m))
if xb is None: xb=x.min()
if xe is None: xe=x.max()
if yb is None: yb=y.min()
if ye is None: ye=y.max()
if not (-1<=task<=1):
raise TypeError('task must be -1, 0 or 1')
if s is None: s=m-sqrt(2*m)
if tx is None and task==-1:
raise TypeError('Knots_x must be given for task=-1')
if tx is not None: _surfit_cache['tx']=myasarray(tx)
nx=len(_surfit_cache['tx'])
if ty is None and task==-1:
raise TypeError('Knots_y must be given for task=-1')
if ty is not None: _surfit_cache['ty']=myasarray(ty)
ny=len(_surfit_cache['ty'])
if task==-1 and nx<2*kx+2:
raise TypeError('There must be at least 2*kx+2 knots_x for task=-1')
if task==-1 and ny<2*ky+2:
raise TypeError('There must be at least 2*ky+2 knots_x for task=-1')
if not ((1<=kx<=5) and (1<=ky<=5)):
raise TypeError('Given degree of the spline (kx,ky=%d,%d) is not supported. (1<=k<=5)' % (kx,ky))
if m<(kx+1)*(ky+1):
raise TypeError('m >= (kx+1)(ky+1) must hold')
if nxest is None: nxest=int(kx+sqrt(m/2))
if nyest is None: nyest=int(ky+sqrt(m/2))
nxest,nyest=max(nxest,2*kx+3),max(nyest,2*ky+3)
if task>=0 and s==0:
nxest=int(kx+sqrt(3*m))
nyest=int(ky+sqrt(3*m))
if task==-1:
_surfit_cache['tx']=myasarray(tx)
_surfit_cache['ty']=myasarray(ty)
tx,ty=_surfit_cache['tx'],_surfit_cache['ty']
wrk=_surfit_cache['wrk']
iwrk=_surfit_cache['iwrk']
u,v,km,ne=nxest-kx-1,nyest-ky-1,max(kx,ky)+1,max(nxest,nyest)
bx,by=kx*v+ky+1,ky*u+kx+1
b1,b2=bx,bx+v-ky
if bx>by: b1,b2=by,by+u-kx
try:
lwrk1=int32(u*v*(2+b1+b2)+2*(u+v+km*(m+ne)+ne-kx-ky)+b2+1)
lwrk2=int32(u*v*(b2+1)+b2)
except OverflowError:
raise OverflowError("Too many data points to interpolate")
tx,ty,c,o = _fitpack._surfit(x,y,z,w,xb,xe,yb,ye,kx,ky,task,s,eps,
tx,ty,nxest,nyest,wrk,lwrk1,lwrk2)
_curfit_cache['tx']=tx
_curfit_cache['ty']=ty
_curfit_cache['wrk']=o['wrk']
ier,fp=o['ier'],o['fp']
tck=[tx,ty,c,kx,ky]
ierm=min(11,max(-3,ier))
if ierm<=0 and not quiet:
print _iermess2[ierm][0]
print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
len(ty),m,fp,s)
if ierm>0 and not full_output:
if ier in [1,2,3,4,5]:
print "Warning: "+_iermess2[ierm][0]
print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
len(ty),m,fp,s)
else:
try:
raise _iermess2[ierm][1](_iermess2[ierm][0])
except KeyError:
raise _iermess2['unknown'][1](_iermess2['unknown'][0])
if full_output:
try:
return tck,fp,ier,_iermess2[ierm][0]
except KeyError:
return tck,fp,ier,_iermess2['unknown'][0]
else:
return tck
def bisplev(x,y,tck,dx=0,dy=0):
"""
Evaluate a bivariate B-spline and its derivatives.
Return a rank-2 array of spline function values (or spline derivative
values) at points given by the cross-product of the rank-1 arrays x and
y. In special cases, return an array or just a float if either x or y or
both are floats. Based on BISPEV from FITPACK.
Parameters
----------
x, y : ndarray
Rank-1 arrays specifying the domain over which to evaluate the
spline or its derivative.
tck : tuple
A sequence of length 5 returned by `bisplrep` containing the knot
locations, the coefficients, and the degree of the spline:
[tx, ty, c, kx, ky].
dx, dy : int, optional
The orders of the partial derivatives in `x` and `y` respectively.
Returns
-------
vals : ndarray
The B-spline or its derivative evaluated over the set formed by
the cross-product of `x` and `y`.
See Also
--------
splprep, splrep, splint, sproot, splev
UnivariateSpline, BivariateSpline
Notes
-----
See `bisplrep` to generate the `tck` representation.
References
----------
.. [1] Dierckx P. : An algorithm for surface fitting
with spline functions
Ima J. Numer. Anal. 1 (1981) 267-283.
.. [2] Dierckx P. : An algorithm for surface fitting
with spline functions
report tw50, Dept. Computer Science,K.U.Leuven, 1980.
.. [3] Dierckx P. : Curve and surface fitting with splines,
Monographs on Numerical Analysis, Oxford University Press, 1993.
"""
tx,ty,c,kx,ky=tck
if not (0<=dx<kx):
raise ValueError("0 <= dx = %d < kx = %d must hold" % (dx,kx))
if not (0<=dy<ky):
raise ValueError("0 <= dy = %d < ky = %d must hold" % (dy,ky))
x,y=map(myasarray,[x,y])
if (len(x.shape) != 1) or (len(y.shape) != 1):
raise ValueError("First two entries should be rank-1 arrays.")
z,ier=_fitpack._bispev(tx,ty,c,kx,ky,x,y,dx,dy)
if ier==10:
raise ValueError("Invalid input data")
if ier:
raise TypeError("An error occurred")
z.shape=len(x),len(y)
if len(z)>1: return z
if len(z[0])>1: return z[0]
return z[0][0]
def dblint(xa,xb,ya,yb,tck):
"""Evaluate the integral of a spline over area [xa,xb] x [ya,yb].
Parameters
----------
xa, xb : float
The end-points of the x integration interval.
ya, yb : float
The end-points of the y integration interval.
tck : list [tx, ty, c, kx, ky]
A sequence of length 5 returned by bisplrep containing the knot
locations tx, ty, the coefficients c, and the degrees kx, ky
of the spline.
Returns
-------
integ : float
The value of the resulting integral.
"""
tx,ty,c,kx,ky=tck
return dfitpack.dblint(tx,ty,c,kx,ky,xb,xe,yb,ye)
def insert(x,tck,m=1,per=0):
"""
Insert knots into a B-spline.
Given the knots and coefficients of a B-spline representation, create a
new B-spline with a knot inserted m times at point x.
This is a wrapper around the FORTRAN routine insert of FITPACK.
Parameters
----------
x (u) : array_like
A 1-D point at which to insert a new knot(s). If `tck` was returned
from `splprep`, then the parameter values, u should be given.
tck : tuple
A tuple (t,c,k) returned by `splrep` or `splprep` containing
the vector of knots, the B-spline coefficients,
and the degree of the spline.
m : int, optional
The number of times to insert the given knot (its multiplicity).
Default is 1.
per : int, optional
If non-zero, input spline is considered periodic.
Returns
-------
tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline
coefficients, and the degree of the new spline.
``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline.
In case of a periodic spline (`per` != 0) there must be
either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x``
or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``.
Notes
-----
Based on algorithms from [1]_ and [2]_.
References
----------
.. [1] W. Boehm, "Inserting new knots into b-spline curves.",
Computer Aided Design, 12, p.199-201, 1980.
.. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on
Numerical Analysis", Oxford University Press, 1993.
"""
t,c,k=tck
try:
c[0][0]
parametric = True
except:
parametric = False
if parametric:
cc = []
for c_vals in c:
tt, cc_val, kk = insert(x, [t, c_vals, k], m)
cc.append(cc_val)
return (tt, cc, kk)
else:
tt, cc, ier = _fitpack._insert(per, t, c, k, x, m)
if ier==10:
raise ValueError("Invalid input data")
if ier:
raise TypeError("An error occurred")
return (tt, cc, k)
if __name__ == "__main__":
import sys
runtest=range(10)
if len(sys.argv[1:])>0:
runtest=map(int,sys.argv[1:])
put=sys.stdout.write
def norm2(x):
return dot(transpose(x),x)
def f1(x,d=0):
if d is None: return "sin"
if x is None: return "sin(x)"
if d%4 == 0: return sin(x)
if d%4 == 1: return cos(x)
if d%4 == 2: return -sin(x)
if d%4 == 3: return -cos(x)
def f2(x,y=0,dx=0,dy=0):
if x is None: return "sin(x+y)"
d=dx+dy
if d%4 == 0: return sin(x+y)
if d%4 == 1: return cos(x+y)
if d%4 == 2: return -sin(x+y)
if d%4 == 3: return -cos(x+y)
def test1(f=f1,per=0,s=0,a=0,b=2*pi,N=20,at=0,xb=None,xe=None):
if xb is None: xb=a
if xe is None: xe=b
x=a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
x1=a+(b-a)*arange(1,N,dtype=float)/float(N-1) # middle points of the nodes
v,v1=f(x),f(x1)
nk=[]
for k in range(1,6):
tck=splrep(x,v,s=s,per=per,k=k,xe=xe)
if at:t=tck[0][k:-k]
else: t=x1
nd=[]
for d in range(k+1):
nd.append(norm2(f(t,d)-splev(t,tck,d)))
nk.append(nd)
print "\nf = %s s=S_k(x;t,c) x in [%s, %s] > [%s, %s]"%(f(None),
`round(xb,3)`,`round(xe,3)`,
`round(a,3)`,`round(b,3)`)
if at: str="at knots"
else: str="at the middle of nodes"
print " per=%d s=%s Evaluation %s"%(per,`s`,str)
print " k : |f-s|^2 |f'-s'| |f''-.. |f'''-. |f''''- |f'''''"
k=1
for l in nk:
put(' %d : '%k)
for r in l:
put(' %.1e'%r)
put('\n')
k=k+1
def test2(f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
ia=0,ib=2*pi,dx=0.2*pi):
if xb is None: xb=a
if xe is None: xe=b
x=a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
v=f(x)
nk=[]
for k in range(1,6):
tck=splrep(x,v,s=s,per=per,k=k,xe=xe)
nk.append([splint(ia,ib,tck),spalde(dx,tck)])
print "\nf = %s s=S_k(x;t,c) x in [%s, %s] > [%s, %s]"%(f(None),
`round(xb,3)`,`round(xe,3)`,
`round(a,3)`,`round(b,3)`)
print " per=%d s=%s N=%d [a, b] = [%s, %s] dx=%s"%(per,`s`,N,`round(ia,3)`,`round(ib,3)`,`round(dx,3)`)
print " k : int(s,[a,b]) Int.Error Rel. error of s^(d)(dx) d = 0, .., k"
k=1
for r in nk:
if r[0]<0: sr='-'
else: sr=' '
put(" %d %s%.8f %.1e "%(k,sr,abs(r[0]),
abs(r[0]-(f(ib,-1)-f(ia,-1)))))
d=0
for dr in r[1]:
put(" %.1e "%(abs(1-dr/f(dx,d))))
d=d+1
put("\n")
k=k+1
def test3(f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
ia=0,ib=2*pi,dx=0.2*pi):
if xb is None: xb=a
if xe is None: xe=b
x=a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
v=f(x)
nk=[]
print " k : Roots of s(x) approx %s x in [%s,%s]:"%\
(f(None),`round(a,3)`,`round(b,3)`)
for k in range(1,6):
tck=splrep(x,v,s=s,per=per,k=k,xe=xe)
print ' %d : %s'%(k,`sproot(tck).tolist()`)
def test4(f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
ia=0,ib=2*pi,dx=0.2*pi):
if xb is None: xb=a
if xe is None: xe=b
x=a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
x1=a+(b-a)*arange(1,N,dtype=float)/float(N-1) # middle points of the nodes
v,v1=f(x),f(x1)
nk=[]
print " u = %s N = %d"%(`round(dx,3)`,N)
print " k : [x(u), %s(x(u))] Error of splprep Error of splrep "%(f(0,None))
for k in range(1,6):
tckp,u=splprep([x,v],s=s,per=per,k=k,nest=-1)
tck=splrep(x,v,s=s,per=per,k=k)
uv=splev(dx,tckp)
print " %d : %s %.1e %.1e"%\
(k,`map(lambda x:round(x,3),uv)`,
abs(uv[1]-f(uv[0])),
abs(splev(uv[0],tck)-f(uv[0])))
print "Derivatives of parametric cubic spline at u (first function):"
k=3
tckp,u=splprep([x,v],s=s,per=per,k=k,nest=-1)
for d in range(1,k+1):
uv=splev(dx,tckp,d)
put(" %s "%(`uv[0]`))
print
def makepairs(x,y):
x,y=map(myasarray,[x,y])
xy=array(map(lambda x,y:map(None,len(y)*[x],y),x,len(x)*[y]))
sh=xy.shape
xy.shape=sh[0]*sh[1],sh[2]
return transpose(xy)
def test5(f=f2,kx=3,ky=3,xb=0,xe=2*pi,yb=0,ye=2*pi,Nx=20,Ny=20,s=0):
x=xb+(xe-xb)*arange(Nx+1,dtype=float)/float(Nx)
y=yb+(ye-yb)*arange(Ny+1,dtype=float)/float(Ny)
xy=makepairs(x,y)
tck=bisplrep(xy[0],xy[1],f(xy[0],xy[1]),s=s,kx=kx,ky=ky)
tt=[tck[0][kx:-kx],tck[1][ky:-ky]]
t2=makepairs(tt[0],tt[1])
v1=bisplev(tt[0],tt[1],tck)
v2=f2(t2[0],t2[1])
v2.shape=len(tt[0]),len(tt[1])
print norm2(ravel(v1-v2))
if 1 in runtest:
print """\
******************************************
\tTests of splrep and splev
******************************************"""
test1(s=1e-6)
test1()
test1(at=1)
test1(per=1)
test1(per=1,at=1)
test1(b=1.5*pi)
test1(b=1.5*pi,xe=2*pi,per=1,s=1e-1)
if 2 in runtest:
print """\
******************************************
\tTests of splint and spalde
******************************************"""
test2()
test2(per=1)
test2(ia=0.2*pi,ib=pi)
test2(ia=0.2*pi,ib=pi,N=50)
if 3 in runtest:
print """\
******************************************
\tTests of sproot
******************************************"""
test3(a=0,b=15)
print "Note that if k is not 3, some roots are missed or incorrect"
if 4 in runtest:
print """\
******************************************
\tTests of splprep, splrep, and splev
******************************************"""
test4()
test4(N=50)
if 5 in runtest:
print """\
******************************************
\tTests of bisplrep, bisplev
******************************************"""
test5()
|