File: ndgriddata.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (190 lines) | stat: -rw-r--r-- 6,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Convenience interface to N-D interpolation

.. versionadded:: 0.9

"""

import numpy as np
from interpnd import LinearNDInterpolator, NDInterpolatorBase, \
     CloughTocher2DInterpolator, _ndim_coords_from_arrays
from scipy.spatial import cKDTree

__all__ = ['griddata', 'NearestNDInterpolator', 'LinearNDInterpolator',
           'CloughTocher2DInterpolator']

#------------------------------------------------------------------------------
# Nearest-neighbour interpolation
#------------------------------------------------------------------------------

class NearestNDInterpolator(NDInterpolatorBase):
    """
    NearestNDInterpolator(points, values)

    Nearest-neighbour interpolation in N dimensions.

    .. versionadded:: 0.9

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndims)
        Data point coordinates.
    values : ndarray of float or complex, shape (npoints, ...)
        Data values.

    Notes
    -----
    Uses ``scipy.spatial.cKDTree``

    """

    def __init__(self, x, y):
        x = _ndim_coords_from_arrays(x)
        self._check_init_shape(x, y)
        self.tree = cKDTree(x)
        self.points = x
        self.values = y

    def __call__(self, *args):
        """
        Evaluate interpolator at given points.

        Parameters
        ----------
        xi : ndarray of float, shape (..., ndim)
            Points where to interpolate data at.

        """
        xi = _ndim_coords_from_arrays(args)
        xi = self._check_call_shape(xi)
        dist, i = self.tree.query(xi)
        return self.values[i]


#------------------------------------------------------------------------------
# Convenience interface function
#------------------------------------------------------------------------------

def griddata(points, values, xi, method='linear', fill_value=np.nan):
    """
    Interpolate unstructured N-dimensional data.

    .. versionadded:: 0.9

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndims)
        Data point coordinates. Can either be a ndarray of
        size (npoints, ndim), or a tuple of `ndim` arrays.
    values : ndarray of float or complex, shape (npoints, ...)
        Data values.
    xi : ndarray of float, shape (..., ndim)
        Points where to interpolate data at.

    method : {'linear', 'nearest', 'cubic'}, optional
        Method of interpolation. One of

        - ``nearest``: return the value at the data point closest to
          the point of interpolation.  See `NearestNDInterpolator` for
          more details.

        - ``linear``: tesselate the input point set to n-dimensional
          simplices, and interpolate linearly on each simplex.  See
          `LinearNDInterpolator` for more details.

        - ``cubic`` (1-D): return the value detemined from a cubic
          spline.

        - ``cubic`` (2-D): return the value determined from a
          piecewise cubic, continuously differentiable (C1), and
          approximately curvature-minimizing polynomial surface. See
          `CloughTocher2DInterpolator` for more details.

    fill_value : float, optional
        Value used to fill in for requested points outside of the
        convex hull of the input points.  If not provided, then the
        default is ``nan``. This option has no effect for the
        'nearest' method.


    Examples
    --------

    Suppose we want to interpolate the 2-D function

    >>> def func(x, y):
    >>>     return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

    on a grid in [0, 1]x[0, 1]

    >>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]

    but we only know its values at 1000 data points:

    >>> points = np.random.rand(1000, 2)
    >>> values = func(points[:,0], points[:,1])

    This can be done with `griddata` -- below we try out all of the
    interpolation methods:

    >>> from scipy.interpolate import griddata
    >>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
    >>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
    >>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

    One can see that the exact result is reproduced by all of the
    methods to some degree, but for this smooth function the piecewise
    cubic interpolant gives the best results:

    >>> import matplotlib.pyplot as plt
    >>> plt.subplot(221)
    >>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
    >>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
    >>> plt.title('Original')
    >>> plt.subplot(222)
    >>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Nearest')
    >>> plt.subplot(223)
    >>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Linear')
    >>> plt.subplot(224)
    >>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Cubic')
    >>> plt.gcf().set_size_inches(6, 6)
    >>> plt.show()

    """

    points = _ndim_coords_from_arrays(points)

    if points.ndim < 2:
        ndim = points.ndim
    else:
        ndim = points.shape[-1]

    if ndim == 1 and method in ('nearest', 'linear', 'cubic'):
        from interpolate import interp1d
        points = points.ravel()
        if isinstance(xi, tuple):
            if len(xi) != 1:
                raise ValueError("invalid number of dimensions in xi")
            xi, = xi
        # Sort points/values together, necessary as input for interp1d
        idx = np.argsort(points)
        points = points[idx]
        values = values[idx]
        ip = interp1d(points, values, kind=method, axis=0, bounds_error=False,
                      fill_value=fill_value)
        return ip(xi)
    elif method == 'nearest':
        ip = NearestNDInterpolator(points, values)
        return ip(xi)
    elif method == 'linear':
        ip = LinearNDInterpolator(points, values, fill_value=fill_value)
        return ip(xi)
    elif method == 'cubic' and ndim == 2:
        ip = CloughTocher2DInterpolator(points, values, fill_value=fill_value)
        return ip(xi)
    else:
        raise ValueError("Unknown interpolation method %r for "
                         "%d dimensional data" % (method, ndim))