1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
""" module to test interpolate_wrapper.py
"""
# Unit Test
import unittest
import time
from numpy import arange, allclose, ones, NaN, isnan
import numpy as np
# functionality to be tested
from scipy.interpolate.interpolate_wrapper import atleast_1d_and_contiguous, \
linear, logarithmic, block_average_above, block, nearest
class Test(unittest.TestCase):
def assertAllclose(self, x, y, rtol=1.0e-5):
for i, xi in enumerate(x):
self.assertTrue(allclose(xi, y[i], rtol) or (isnan(xi) and isnan(y[i])))
def test_nearest(self):
N = 5
x = arange(N)
y = arange(N)
self.assertAllclose(y, nearest(x, y, x+.1))
self.assertAllclose(y, nearest(x, y, x-.1))
def test_linear(self):
N = 3000.
x = arange(N)
y = arange(N)
new_x = arange(N)+0.5
t1 = time.clock()
new_y = linear(x, y, new_x)
t2 = time.clock()
#print "time for linear interpolation with N = %i:" % N, t2 - t1
self.assertAllclose(new_y[:5], [0.5, 1.5, 2.5, 3.5, 4.5])
def test_block_average_above(self):
N = 3000.
x = arange(N)
y = arange(N)
new_x = arange(N/2)*2
t1 = time.clock()
new_y = block_average_above(x, y, new_x)
t2 = time.clock()
#print "time for block_avg_above interpolation with N = %i:" % N, t2 - t1
self.assertAllclose(new_y[:5], [0.0, 0.5, 2.5, 4.5, 6.5])
def test_linear2(self):
N = 3000.
x = arange(N)
y = ones((100,N)) * arange(N)
new_x = arange(N)+0.5
t1 = time.clock()
new_y = linear(x, y, new_x)
t2 = time.clock()
#print "time for 2D linear interpolation with N = %i:" % N, t2 - t1
self.assertAllclose(new_y[:5,:5],
[[ 0.5, 1.5, 2.5, 3.5, 4.5],
[ 0.5, 1.5, 2.5, 3.5, 4.5],
[ 0.5, 1.5, 2.5, 3.5, 4.5],
[ 0.5, 1.5, 2.5, 3.5, 4.5],
[ 0.5, 1.5, 2.5, 3.5, 4.5]])
def test_logarithmic(self):
N = 4000.
x = arange(N)
y = arange(N)
new_x = arange(N)+0.5
t1 = time.clock()
new_y = logarithmic(x, y, new_x)
t2 = time.clock()
#print "time for logarithmic interpolation with N = %i:" % N, t2 - t1
correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
self.assertAllclose(new_y[:5], correct_y)
def runTest(self):
test_list = [name for name in dir(self) if name.find('test_')==0]
for test_name in test_list:
exec("self.%s()" % test_name)
if __name__ == '__main__':
unittest.main()
|