1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
"""
Preliminary module to handle fortran formats for IO. Does not use this outside
scipy.sparse io for now, until the API is deemed reasonable.
The *Format classes handle conversion between fortran and python format, and
FortranFormatParser can create *Format instances from raw fortran format
strings (e.g. '(3I4)', '(10I3)', etc...)
"""
import re
import warnings
import numpy as np
__all__ = ["BadFortranFormat", "FortranFormatParser", "IntFormat", "ExpFormat"]
TOKENS = {
"LPAR": r"\(",
"RPAR": r"\)",
"INT_ID": r"I",
"EXP_ID": r"E",
"INT": r"\d+",
"DOT": r"\.",
}
class BadFortranFormat(SyntaxError):
pass
def number_digits(n):
return int(np.floor(np.log10(np.abs(n))) + 1)
class IntFormat(object):
@classmethod
def from_number(cls, n, min=None):
"""Given an integer, returns a "reasonable" IntFormat instance to represent
any number between 0 and n if n > 0, -n and n if n < 0
Parameters
----------
n: int
max number one wants to be able to represent
min: int
minimum number of characters to use for the format
Returns
-------
res: IntFormat
IntFormat instance with reasonable (see Note) computed width
Note
----
Reasonable should be understood as the minimal string length necessary
without losing precision. For example, IntFormat.from_number(1) will
return an IntFormat instance of width 2, so that any 0 and 1 may be
represented as 1-character strings without loss of information."""
width = number_digits(n) + 1
if n < 0:
width += 1
repeat = 80 // width
return cls(width, min, repeat=repeat)
def __init__(self, width, min=None, repeat=None):
self.width = width
self.repeat = repeat
self.min = min
def __repr__(self):
r = "IntFormat("
if self.repeat:
r += "%d" % self.repeat
r += "I%d" % self.width
if self.min:
r += ".%d" % self.min
return r + ")"
@property
def fortran_format(self):
r = "("
if self.repeat:
r += "%d" % self.repeat
r += "I%d" % self.width
if self.min:
r += ".%d" % self.min
return r + ")"
@property
def python_format(self):
return "%" + str(self.width) + "d"
class ExpFormat(object):
@classmethod
def from_number(cls, n, min=None):
"""Given a float number, returns a "reasonable" ExpFormat instance to
represent any number between -n and n.
Parameters
----------
n: float
max number one wants to be able to represent
min: int
minimum number of characters to use for the format
Returns
-------
res: ExpFormat
ExpFormat instance with reasonable (see Note) computed width
Note
----
Reasonable should be understood as the minimal string length necessary
to avoid losing precision."""
# len of one number in exp format: sign + 1|0 + "." +
# number of digit for fractional part + 'E' + sign of exponent +
# len of exponent
finfo = np.finfo(n.dtype)
# Number of digits for fractional part
n_prec = finfo.precision + 1
# Number of digits for exponential part
n_exp = number_digits(np.max(np.abs([finfo.maxexp, finfo.minexp])))
width = 1 + 1 + n_prec + 1 + n_exp + 1
if n < 0:
width += 1
repeat = int(np.floor(80 / width))
return cls(width, n_prec, min, repeat=repeat)
def __init__(self, width, significand, min=None, repeat=None):
"""\
Parameters
----------
width: int
number of characters taken by the string (includes space).
"""
self.width = width
self.significand = significand
self.repeat = repeat
self.min = min
def __repr__(self):
r = "ExpFormat("
if self.repeat:
r += "%d" % self.repeat
r += "E%d.%d" % (self.width, self.significand)
if self.min:
r += "E%d" % self.min
return r + ")"
@property
def fortran_format(self):
r = "("
if self.repeat:
r += "%d" % self.repeat
r += "E%d.%d" % (self.width, self.significand)
if self.min:
r += "E%d" % self.min
return r + ")"
@property
def python_format(self):
return "%" + str(self.width-1) + "." + str(self.significand) + "E"
class Token(object):
def __init__(self, type, value, pos):
self.type = type
self.value = value
self.pos = pos
def __str__(self):
return """Token('%s', "%s")""" % (self.type, self.value)
def __repr__(self):
return self.__str__()
class Tokenizer(object):
def __init__(self):
self.tokens = TOKENS.keys()
self.res = [re.compile(TOKENS[i]) for i in self.tokens]
def input(self, s):
self.data = s
self.curpos = 0
self.len = len(s)
def next_token(self):
curpos = self.curpos
tokens = self.tokens
while curpos < self.len:
for i, r in enumerate(self.res):
m = r.match(self.data, curpos)
if m is None:
continue
else:
self.curpos = m.end()
return Token(self.tokens[i], m.group(), self.curpos)
else:
raise SyntaxError("Unknown character at position %d (%s)" \
% (self.curpos, self.data[curpos]))
# Grammar for fortran format:
# format : LPAR format_string RPAR
# format_string : repeated | simple
# repeated : repeat simple
# simple : int_fmt | exp_fmt
# int_fmt : INT_ID width
# exp_fmt : simple_exp_fmt
# simple_exp_fmt : EXP_ID width DOT significand
# extended_exp_fmt : EXP_ID width DOT significand EXP_ID ndigits
# repeat : INT
# width : INT
# significand : INT
# ndigits : INT
# Naive fortran formatter - parser is hand-made
class FortranFormatParser(object):
"""Parser for fortran format strings. The parse method returns a *Format
instance.
Note
----
Only ExpFormat (exponential format for floating values) and IntFormat
(integer format) for now.
"""
def __init__(self):
self.tokenizer = Tokenizer()
def parse(self, s):
self.tokenizer.input(s)
tokens = []
try:
while True:
t = self.tokenizer.next_token()
if t is None:
break
else:
tokens.append(t)
return self._parse_format(tokens)
except SyntaxError, e:
raise BadFortranFormat(str(e))
def _get_min(self, tokens):
next = tokens.pop(0)
if not next.type == "DOT":
raise SyntaxError()
next = tokens.pop(0)
return next.value
def _expect(self, token, tp):
if not token.type == tp:
raise SyntaxError()
def _parse_format(self, tokens):
if not tokens[0].type == "LPAR":
raise SyntaxError("Expected left parenthesis at position "\
"%d (got '%s')" % (0, tokens[0].value))
elif not tokens[-1].type == "RPAR":
raise SyntaxError("Expected right parenthesis at position "\
"%d (got '%s')" % (len(tokens), tokens[-1].value))
tokens = tokens[1:-1]
types = [t.type for t in tokens]
if types[0] == "INT":
repeat = int(tokens.pop(0).value)
else:
repeat = None
next = tokens.pop(0)
if next.type == "INT_ID":
next = self._next(tokens, "INT")
width = int(next.value)
if tokens:
min = int(self._get_min(tokens))
else:
min = None
return IntFormat(width, min, repeat)
elif next.type == "EXP_ID":
next = self._next(tokens, "INT")
width = int(next.value)
next = self._next(tokens, "DOT")
next = self._next(tokens, "INT")
significand = int(next.value)
if tokens:
next = self._next(tokens, "EXP_ID")
next = self._next(tokens, "INT")
min = int(next.value)
else:
min = None
return ExpFormat(width, significand, min, repeat)
else:
raise SyntaxError("Invalid formater type %s" % next.value)
def _next(self, tokens, tp):
if not len(tokens) > 0:
raise SyntaxError()
next = tokens.pop(0)
self._expect(next, tp)
return next
|