File: test_mio.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (887 lines) | stat: -rw-r--r-- 29,350 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
#!/usr/bin/env python
''' Nose test generators

Need function load / save / roundtrip tests

'''
import sys
import os
from os.path import join as pjoin, dirname
from glob import glob
if sys.version_info[0] >= 3:
    from io import BytesIO
else:
    from StringIO import StringIO as BytesIO
from tempfile import mkdtemp
# functools is only available in Python >=2.5
try:
    from functools import partial
except ImportError:
    from scipy.io.arff.myfunctools import partial

import warnings
import shutil
import gzip

from numpy.testing import \
     assert_array_equal, \
     assert_array_almost_equal, \
     assert_equal, \
     assert_raises, run_module_suite

from nose.tools import assert_true

import numpy as np
from numpy import array
import scipy.sparse as SP

import scipy.io.matlab.byteordercodes as boc
from scipy.io.matlab.miobase import matdims, MatFileReader, \
    MatWriteError
from scipy.io.matlab.mio import find_mat_file, mat_reader_factory, \
    loadmat, savemat
from scipy.io.matlab.mio5 import MatlabObject, MatFile5Writer, \
      MatFile5Reader, MatlabFunction, varmats_from_mat

# Use future defaults to silence unwanted test warnings
savemat_future = partial(savemat, oned_as='row')
class MatFile5Reader_future(MatFile5Reader):
    def __init__(self, *args, **kwargs):
        sar = kwargs.get('struct_as_record')
        if sar is None:
            kwargs['struct_as_record'] = True
        super(MatFile5Reader_future, self).__init__(*args, **kwargs)


test_data_path = pjoin(dirname(__file__), 'data')

def mlarr(*args, **kwargs):
    ''' Convenience function to return matlab-compatible 2D array
    '''
    arr = np.array(*args, **kwargs)
    arr.shape = matdims(arr)
    return arr

# Define cases to test
theta = np.pi/4*np.arange(9,dtype=float).reshape(1,9)
case_table4 = [
    {'name': 'double',
     'expected': {'testdouble': theta}
     }]
case_table4.append(
    {'name': 'string',
     'expected': {'teststring':
                  array([u'"Do nine men interpret?" "Nine men," I nod.'])},
     })
case_table4.append(
    {'name': 'complex',
     'expected': {'testcomplex': np.cos(theta) + 1j*np.sin(theta)}
     })
A = np.zeros((3,5))
A[0] = range(1,6)
A[:,0] = range(1,4)
case_table4.append(
    {'name': 'matrix',
     'expected': {'testmatrix': A},
     })
case_table4.append(
    {'name': 'sparse',
     'expected': {'testsparse': SP.coo_matrix(A)},
     })
B = A.astype(complex)
B[0,0] += 1j
case_table4.append(
    {'name': 'sparsecomplex',
     'expected': {'testsparsecomplex': SP.coo_matrix(B)},
     })
case_table4.append(
    {'name': 'multi',
     'expected': {'theta': theta,
                  'a': A},
     })
case_table4.append(
    {'name': 'minus',
     'expected': {'testminus': mlarr(-1)},
     })
case_table4.append(
    {'name': 'onechar',
     'expected': {'testonechar': array([u'r'])},
     })
# Cell arrays stored as object arrays
CA = mlarr(( # tuple for object array creation
        [],
        mlarr([1]),
        mlarr([[1,2]]),
        mlarr([[1,2,3]])), dtype=object).reshape(1,-1)
CA[0,0] = array(
    [u'This cell contains this string and 3 arrays of increasing length'])
case_table5 = [
    {'name': 'cell',
     'expected': {'testcell': CA}}]
CAE = mlarr(( # tuple for object array creation
    mlarr(1),
    mlarr(2),
    mlarr([]),
    mlarr([]),
    mlarr(3)), dtype=object).reshape(1,-1)
objarr = np.empty((1,1),dtype=object)
objarr[0,0] = mlarr(1)
case_table5.append(
    {'name': 'scalarcell',
     'expected': {'testscalarcell': objarr}
     })
case_table5.append(
    {'name': 'emptycell',
     'expected': {'testemptycell': CAE}})
case_table5.append(
    {'name': 'stringarray',
     'expected': {'teststringarray': array(
    [u'one  ', u'two  ', u'three'])},
     })
case_table5.append(
    {'name': '3dmatrix',
     'expected': {
    'test3dmatrix': np.transpose(np.reshape(range(1,25), (4,3,2)))}
     })
st_sub_arr = array([np.sqrt(2),np.exp(1),np.pi]).reshape(1,3)
dtype = [(n, object) for n in ['stringfield', 'doublefield', 'complexfield']]
st1 = np.zeros((1,1), dtype)
st1['stringfield'][0,0] = array([u'Rats live on no evil star.'])
st1['doublefield'][0,0] = st_sub_arr
st1['complexfield'][0,0] = st_sub_arr * (1 + 1j)
case_table5.append(
    {'name': 'struct',
     'expected': {'teststruct': st1}
     })
CN = np.zeros((1,2), dtype=object)
CN[0,0] = mlarr(1)
CN[0,1] = np.zeros((1,3), dtype=object)
CN[0,1][0,0] = mlarr(2, dtype=np.uint8)
CN[0,1][0,1] = mlarr([[3]], dtype=np.uint8)
CN[0,1][0,2] = np.zeros((1,2), dtype=object)
CN[0,1][0,2][0,0] = mlarr(4, dtype=np.uint8)
CN[0,1][0,2][0,1] = mlarr(5, dtype=np.uint8)
case_table5.append(
    {'name': 'cellnest',
     'expected': {'testcellnest': CN},
     })
st2 = np.empty((1,1), dtype=[(n, object) for n in ['one', 'two']])
st2[0,0]['one'] = mlarr(1)
st2[0,0]['two'] = np.empty((1,1), dtype=[('three', object)])
st2[0,0]['two'][0,0]['three'] = array([u'number 3'])
case_table5.append(
    {'name': 'structnest',
     'expected': {'teststructnest': st2}
     })
a = np.empty((1,2), dtype=[(n, object) for n in ['one', 'two']])
a[0,0]['one'] = mlarr(1)
a[0,0]['two'] = mlarr(2)
a[0,1]['one'] = array([u'number 1'])
a[0,1]['two'] = array([u'number 2'])
case_table5.append(
    {'name': 'structarr',
     'expected': {'teststructarr': a}
     })
ODT = np.dtype([(n, object) for n in
                 ['expr', 'inputExpr', 'args',
                  'isEmpty', 'numArgs', 'version']])
MO = MatlabObject(np.zeros((1,1), dtype=ODT), 'inline')
m0 = MO[0,0]
m0['expr'] = array([u'x'])
m0['inputExpr'] = array([u' x = INLINE_INPUTS_{1};'])
m0['args'] = array([u'x'])
m0['isEmpty'] = mlarr(0)
m0['numArgs'] = mlarr(1)
m0['version'] = mlarr(1)
case_table5.append(
    {'name': 'object',
     'expected': {'testobject': MO}
     })
u_str = open(
    pjoin(test_data_path, 'japanese_utf8.txt'),
    'rb').read().decode('utf-8')
case_table5.append(
    {'name': 'unicode',
    'expected': {'testunicode': array([u_str])}
    })
case_table5.append(
    {'name': 'sparse',
     'expected': {'testsparse': SP.coo_matrix(A)},
     })
case_table5.append(
    {'name': 'sparsecomplex',
     'expected': {'testsparsecomplex': SP.coo_matrix(B)},
     })

case_table5_rt = case_table5[:]
# Inline functions can't be concatenated in matlab, so RT only
case_table5_rt.append(
    {'name': 'objectarray',
     'expected': {'testobjectarray': np.repeat(MO, 2).reshape(1,2)}})


def types_compatible(var1, var2):
    ''' Check if types are same or compatible

    0d numpy scalars are compatible with bare python scalars
    '''
    type1 = type(var1)
    type2 = type(var2)
    if type1 is type2:
        return True
    if type1 is np.ndarray and var1.shape == ():
        return type(var1.item()) is type2
    if type2 is np.ndarray and var2.shape == ():
        return type(var2.item()) is type1
    return False


def _check_level(label, expected, actual):
    """ Check one level of a potentially nested array """
    if SP.issparse(expected): # allow different types of sparse matrices
        assert_true(SP.issparse(actual))
        assert_array_almost_equal(actual.todense(),
                                  expected.todense(),
                                  err_msg = label,
                                  decimal = 5)
        return
    # Check types are as expected
    assert_true(types_compatible(expected, actual), \
           "Expected type %s, got %s at %s" %
                (type(expected), type(actual), label))
    # A field in a record array may not be an ndarray
    # A scalar from a record array will be type np.void
    if not isinstance(expected,
                      (np.void, np.ndarray, MatlabObject)):
        assert_equal(expected, actual)
        return
    # This is an ndarray-like thing
    assert_true(expected.shape == actual.shape,
                msg='Expected shape %s, got %s at %s' % (expected.shape,
                                                         actual.shape,
                                                         label)
                )
    ex_dtype = expected.dtype
    if ex_dtype.hasobject: # array of objects
        if isinstance(expected, MatlabObject):
            assert_equal(expected.classname, actual.classname)
        for i, ev in enumerate(expected):
            level_label = "%s, [%d], " % (label, i)
            _check_level(level_label, ev, actual[i])
        return
    if ex_dtype.fields: # probably recarray
        for fn in ex_dtype.fields:
            level_label = "%s, field %s, " % (label, fn)
            _check_level(level_label,
                         expected[fn], actual[fn])
        return
    if ex_dtype.type in (np.unicode, # string
                         np.unicode_):
        assert_equal(actual, expected, err_msg=label)
        return
    # Something numeric
    assert_array_almost_equal(actual, expected, err_msg=label, decimal=5)


def _load_check_case(name, files, case):
    for file_name in files:
        matdict = loadmat(file_name, struct_as_record=True)
        label = "test %s; file %s" % (name, file_name)
        for k, expected in case.items():
            k_label = "%s, variable %s" % (label, k)
            assert_true(k in matdict, "Missing key at %s" % k_label)
            _check_level(k_label, expected, matdict[k])


# Round trip tests
def _rt_check_case(name, expected, format):
    mat_stream = BytesIO()
    savemat_future(mat_stream, expected, format=format)
    mat_stream.seek(0)
    _load_check_case(name, [mat_stream], expected)


# generator for load tests
def test_load():
    for case in case_table4 + case_table5:
        name = case['name']
        expected = case['expected']
        filt = pjoin(test_data_path, 'test%s_*.mat' % name)
        files = glob(filt)
        assert_true(len(files) > 0,
                    "No files for test %s using filter %s" % (name, filt))
        yield _load_check_case, name, files, expected


# generator for round trip tests
def test_round_trip():
    for case in case_table4 + case_table5_rt:
        name = case['name'] + '_round_trip'
        expected = case['expected']
        format = case in case_table4 and '4' or '5'
        yield _rt_check_case, name, expected, format


def test_gzip_simple():
    xdense = np.zeros((20,20))
    xdense[2,3]=2.3
    xdense[4,5]=4.5
    x = SP.csc_matrix(xdense)

    name = 'gzip_test'
    expected = {'x':x}
    format='4'

    tmpdir = mkdtemp()
    try:
        fname = pjoin(tmpdir,name)
        mat_stream = gzip.open( fname,mode='wb')
        savemat_future(mat_stream, expected, format=format)
        mat_stream.close()

        mat_stream = gzip.open( fname,mode='rb')
        actual = loadmat(mat_stream, struct_as_record=True)
        mat_stream.close()
    finally:
        shutil.rmtree(tmpdir)

    assert_array_almost_equal(actual['x'].todense(),
                              expected['x'].todense(),
                              err_msg=repr(actual))

def test_multiple_open():
    # Ticket #1039, on Windows: check that files are not left open
    tmpdir = mkdtemp()
    try:
        x = dict(x=np.zeros((2, 2)))

        fname = pjoin(tmpdir, "a.mat")

        # Check that file is not left open
        savemat(fname, x, oned_as='row')
        os.unlink(fname)
        savemat(fname, x, oned_as='row')
        loadmat(fname)
        os.unlink(fname)

        # Check that stream is left open
        f = open(fname, 'wb')
        savemat(f, x, oned_as='column')
        f.seek(0)
        f.close()

        f = open(fname, 'rb')
        loadmat(f)
        f.seek(0)
        f.close()
    finally:
        shutil.rmtree(tmpdir)

def test_mat73():
    # Check any hdf5 files raise an error
    filenames = glob(
        pjoin(test_data_path, 'testhdf5*.mat'))
    assert_true(len(filenames)>0)
    for filename in filenames:
        assert_raises(NotImplementedError,
                      loadmat,
                      filename,
                      struct_as_record=True)


def test_warnings():
    fname = pjoin(test_data_path, 'testdouble_7.1_GLNX86.mat')
    warnings.simplefilter('error')
    # This should not generate a warning
    mres = loadmat(fname, struct_as_record=True)
    # This neither
    mres = loadmat(fname, struct_as_record=False)
    # This should - because of deprecated system path search
    yield assert_raises, DeprecationWarning, find_mat_file, fname
    warnings.resetwarnings()


def test_regression_653():
    """Regression test for #653."""
    assert_raises(TypeError, savemat_future, BytesIO(), {'d':{1:2}}, format='5')


def test_structname_len():
    # Test limit for length of field names in structs
    lim = 31
    fldname = 'a' * lim
    st1 = np.zeros((1,1), dtype=[(fldname, object)])
    mat_stream = BytesIO()
    savemat_future(BytesIO(), {'longstruct': st1}, format='5')
    fldname = 'a' * (lim+1)
    st1 = np.zeros((1,1), dtype=[(fldname, object)])
    assert_raises(ValueError, savemat_future, BytesIO(),
                  {'longstruct': st1}, format='5')


def test_4_and_long_field_names_incompatible():
    # Long field names option not supported in 4
    my_struct = np.zeros((1,1),dtype=[('my_fieldname',object)])
    assert_raises(ValueError, savemat_future, BytesIO(),
                  {'my_struct':my_struct}, format='4', long_field_names=True)


def test_long_field_names():
    # Test limit for length of field names in structs
    lim = 63
    fldname = 'a' * lim
    st1 = np.zeros((1,1), dtype=[(fldname, object)])
    mat_stream = BytesIO()
    savemat_future(BytesIO(), {'longstruct': st1}, format='5',long_field_names=True)
    fldname = 'a' * (lim+1)
    st1 = np.zeros((1,1), dtype=[(fldname, object)])
    assert_raises(ValueError, savemat_future, BytesIO(),
                  {'longstruct': st1}, format='5',long_field_names=True)


def test_long_field_names_in_struct():
    # Regression test - long_field_names was erased if you passed a struct
    # within a struct
    lim = 63
    fldname = 'a' * lim
    cell = np.ndarray((1,2),dtype=object)
    st1 = np.zeros((1,1), dtype=[(fldname, object)])
    cell[0,0]=st1
    cell[0,1]=st1
    mat_stream = BytesIO()
    savemat_future(BytesIO(), {'longstruct': cell}, format='5',long_field_names=True)
    #
    # Check to make sure it fails with long field names off
    #
    assert_raises(ValueError, savemat_future, BytesIO(),
                  {'longstruct': cell}, format='5', long_field_names=False)


def test_cell_with_one_thing_in_it():
    # Regression test - make a cell array that's 1 x 2 and put two
    # strings in it.  It works. Make a cell array that's 1 x 1 and put
    # a string in it. It should work but, in the old days, it didn't.
    cells = np.ndarray((1,2),dtype=object)
    cells[0,0]='Hello'
    cells[0,1]='World'
    mat_stream = BytesIO()
    savemat_future(BytesIO(), {'x': cells}, format='5')

    cells = np.ndarray((1,1),dtype=object)
    cells[0,0]='Hello, world'
    mat_stream = BytesIO()
    savemat_future(BytesIO(), {'x': cells}, format='5')


def test_writer_properties():
    # Tests getting, setting of properties of matrix writer
    mfw = MatFile5Writer(BytesIO(), oned_as='row')
    yield assert_equal, mfw.global_vars, []
    mfw.global_vars = ['avar']
    yield assert_equal, mfw.global_vars, ['avar']
    yield assert_equal, mfw.unicode_strings, False
    mfw.unicode_strings = True
    yield assert_equal, mfw.unicode_strings, True
    yield assert_equal, mfw.long_field_names, False
    mfw.long_field_names = True
    yield assert_equal, mfw.long_field_names, True


def test_use_small_element():
    # Test whether we're using small data element or not
    sio = BytesIO()
    wtr = MatFile5Writer(sio, oned_as='column')
    # First check size for no sde for name
    arr = np.zeros(10)
    wtr.put_variables({'aaaaa': arr})
    w_sz = len(sio.getvalue())
    # Check small name results in largish difference in size
    sio.truncate(0)
    sio.seek(0)
    wtr.put_variables({'aaaa': arr})
    yield assert_true, w_sz - len(sio.getvalue()) > 4
    # Whereas increasing name size makes less difference
    sio.truncate(0)
    sio.seek(0)
    wtr.put_variables({'aaaaaa': arr})
    yield assert_true, len(sio.getvalue()) - w_sz < 4


def test_save_dict():
    # Test that dict can be saved (as recarray), loaded as matstruct
    d = {'a':1, 'b':2}
    stream = BytesIO()
    savemat_future(stream, {'dict':d})
    stream.seek(0)
    vals = loadmat(stream)


def test_1d_shape():
    # Current 5 behavior is 1D -> column vector
    arr = np.arange(5)
    stream = BytesIO()
    # silence warnings for tests
    warnings.simplefilter('ignore')
    savemat(stream, {'oned':arr}, format='5')
    vals = loadmat(stream)
    assert_equal(vals['oned'].shape, (5,1))
    # Current 4 behavior is 1D -> row vector
    stream = BytesIO()
    savemat(stream, {'oned':arr}, format='4')
    vals = loadmat(stream)
    assert_equal(vals['oned'].shape, (1, 5))
    for format in ('4', '5'):
        # can be explicitly 'column' for oned_as
        stream = BytesIO()
        savemat(stream, {'oned':arr},
                format=format,
                oned_as='column')
        vals = loadmat(stream)
        assert_equal(vals['oned'].shape, (5,1))
        # but different from 'row'
        stream = BytesIO()
        savemat(stream, {'oned':arr},
                format=format,
                oned_as='row')
        vals = loadmat(stream)
        assert_equal(vals['oned'].shape, (1,5))
    warnings.resetwarnings()


def test_compression():
    arr = np.zeros(100).reshape((5,20))
    arr[2,10] = 1
    stream = BytesIO()
    savemat_future(stream, {'arr':arr})
    raw_len = len(stream.getvalue())
    vals = loadmat(stream)
    yield assert_array_equal, vals['arr'], arr
    stream = BytesIO()
    savemat_future(stream, {'arr':arr}, do_compression=True)
    compressed_len = len(stream.getvalue())
    vals = loadmat(stream)
    yield assert_array_equal, vals['arr'], arr
    yield assert_true, raw_len>compressed_len
    # Concatenate, test later
    arr2 = arr.copy()
    arr2[0,0] = 1
    stream = BytesIO()
    savemat_future(stream, {'arr':arr, 'arr2':arr2}, do_compression=False)
    vals = loadmat(stream)
    yield assert_array_equal, vals['arr2'], arr2
    stream = BytesIO()
    savemat_future(stream, {'arr':arr, 'arr2':arr2}, do_compression=True)
    vals = loadmat(stream)
    yield assert_array_equal, vals['arr2'], arr2


def test_single_object():
    stream = BytesIO()
    savemat_future(stream, {'A':np.array(1, dtype=object)})


def test_skip_variable():
    # Test skipping over the first of two variables in a MAT file
    # using mat_reader_factory and put_variables to read them in.
    #
    # This is a regression test of a problem that's caused by
    # using the compressed file reader seek instead of the raw file
    # I/O seek when skipping over a compressed chunk.
    #
    # The problem arises when the chunk is large: this file has
    # a 256x256 array of random (uncompressible) doubles.
    #
    filename = pjoin(test_data_path,'test_skip_variable.mat')
    #
    # Prove that it loads with loadmat
    #
    d = loadmat(filename, struct_as_record=True)
    yield assert_true, d.has_key('first')
    yield assert_true, d.has_key('second')
    #
    # Make the factory
    #
    factory = mat_reader_factory(filename, struct_as_record=True)
    #
    # This is where the factory breaks with an error in MatMatrixGetter.to_next
    #
    d = factory.get_variables('second')
    yield assert_true, d.has_key('second')


def test_empty_struct():
    # ticket 885
    filename = pjoin(test_data_path,'test_empty_struct.mat')
    # before ticket fix, this would crash with ValueError, empty data
    # type
    d = loadmat(filename, struct_as_record=True)
    a = d['a']
    assert_equal(a.shape, (1,1))
    assert_equal(a.dtype, np.dtype(np.object))
    assert_true(a[0,0] is None)
    stream = BytesIO()
    arr = np.array((), dtype='U')
    # before ticket fix, this used to give data type not understood
    savemat_future(stream, {'arr':arr})
    d = loadmat(stream)
    a2 = d['arr']
    assert_array_equal(a2, arr)


def test_recarray():
    # check roundtrip of structured array
    dt = [('f1', 'f8'),
          ('f2', 'S10')]
    arr = np.zeros((2,), dtype=dt)
    arr[0]['f1'] = 0.5
    arr[0]['f2'] = 'python'
    arr[1]['f1'] = 99
    arr[1]['f2'] = 'not perl'
    stream = BytesIO()
    savemat_future(stream, {'arr': arr})
    d = loadmat(stream, struct_as_record=False)
    a20 = d['arr'][0,0]
    yield assert_equal, a20.f1, 0.5
    yield assert_equal, a20.f2, 'python'
    d = loadmat(stream, struct_as_record=True)
    a20 = d['arr'][0,0]
    yield assert_equal, a20['f1'], 0.5
    yield assert_equal, a20['f2'], 'python'
    # structs always come back as object types
    yield assert_equal, a20.dtype, np.dtype([('f1', 'O'),
                                             ('f2', 'O')])
    a21 = d['arr'].flat[1]
    yield assert_equal, a21['f1'], 99
    yield assert_equal, a21['f2'], 'not perl'


def test_save_object():
    class C(object): pass
    c = C()
    c.field1 = 1
    c.field2 = 'a string'
    stream = BytesIO()
    savemat_future(stream, {'c': c})
    d = loadmat(stream, struct_as_record=False)
    c2 = d['c'][0,0]
    assert_equal(c2.field1, 1)
    assert_equal(c2.field2, 'a string')
    d = loadmat(stream, struct_as_record=True)
    c2 = d['c'][0,0]
    assert_equal(c2['field1'], 1)
    assert_equal(c2['field2'], 'a string')


def test_read_opts():
    # tests if read is seeing option sets, at initialization and after
    # initialization
    arr = np.arange(6).reshape(1,6)
    stream = BytesIO()
    savemat_future(stream, {'a': arr})
    rdr = MatFile5Reader_future(stream)
    back_dict = rdr.get_variables()
    rarr = back_dict['a']
    assert_array_equal(rarr, arr)
    rdr = MatFile5Reader_future(stream, squeeze_me=True)
    assert_array_equal(rdr.get_variables()['a'], arr.reshape((6,)))
    rdr.squeeze_me = False
    assert_array_equal(rarr, arr)
    rdr = MatFile5Reader_future(stream, byte_order=boc.native_code)
    assert_array_equal(rdr.get_variables()['a'], arr)
    # inverted byte code leads to error on read because of swapped
    # header etc
    rdr = MatFile5Reader_future(stream, byte_order=boc.swapped_code)
    assert_raises(Exception, rdr.get_variables)
    rdr.byte_order = boc.native_code
    assert_array_equal(rdr.get_variables()['a'], arr)
    arr = np.array(['a string'])
    stream.truncate(0)
    stream.seek(0)
    savemat_future(stream, {'a': arr})
    rdr = MatFile5Reader_future(stream)
    assert_array_equal(rdr.get_variables()['a'], arr)
    rdr = MatFile5Reader_future(stream, chars_as_strings=False)
    carr = np.atleast_2d(np.array(list(arr.item()), dtype='U1'))
    assert_array_equal(rdr.get_variables()['a'], carr)
    rdr.chars_as_strings=True
    assert_array_equal(rdr.get_variables()['a'], arr)


def test_empty_string():
    # make sure reading empty string does not raise error
    estring_fname = pjoin(test_data_path, 'single_empty_string.mat')
    rdr = MatFile5Reader_future(open(estring_fname, 'rb'))
    d = rdr.get_variables()
    assert_array_equal(d['a'], np.array([], dtype='U1'))
    # empty string round trip.  Matlab cannot distiguish
    # between a string array that is empty, and a string array
    # containing a single empty string, because it stores strings as
    # arrays of char.  There is no way of having an array of char that
    # is not empty, but contains an empty string.
    stream = BytesIO()
    savemat_future(stream, {'a': np.array([''])})
    rdr = MatFile5Reader_future(stream)
    d = rdr.get_variables()
    assert_array_equal(d['a'], np.array([], dtype='U1'))
    stream.truncate(0)
    stream.seek(0)
    savemat_future(stream, {'a': np.array([], dtype='U1')})
    rdr = MatFile5Reader_future(stream)
    d = rdr.get_variables()
    assert_array_equal(d['a'], np.array([], dtype='U1'))


def test_mat4_3d():
    # test behavior when writing 3D arrays to matlab 4 files
    stream = BytesIO()
    arr = np.arange(24).reshape((2,3,4))
    warnings.simplefilter('error')
    assert_raises(DeprecationWarning, savemat_future,
                  stream, {'a': arr}, True, '4')
    warnings.resetwarnings()
    # For now, we save a 3D array as 2D
    warnings.simplefilter('ignore')
    savemat_future(stream, {'a': arr}, format='4')
    warnings.resetwarnings()
    d = loadmat(stream)
    assert_array_equal(d['a'], arr.reshape((6,4)))


def test_func_read():
    func_eg = pjoin(test_data_path, 'testfunc_7.4_GLNX86.mat')
    rdr = MatFile5Reader_future(open(func_eg, 'rb'))
    d = rdr.get_variables()
    yield assert_true, isinstance(d['testfunc'], MatlabFunction)
    stream = BytesIO()
    wtr = MatFile5Writer(stream, oned_as='row')
    yield assert_raises, MatWriteError, wtr.put_variables, d


def test_mat_dtype():
    double_eg = pjoin(test_data_path, 'testmatrix_6.1_SOL2.mat')
    rdr = MatFile5Reader_future(open(double_eg, 'rb'), mat_dtype=False)
    d = rdr.get_variables()
    yield assert_equal, d['testmatrix'].dtype.kind, 'u'
    rdr = MatFile5Reader_future(open(double_eg, 'rb'), mat_dtype=True)
    d = rdr.get_variables()
    yield assert_equal, d['testmatrix'].dtype.kind, 'f'


def test_sparse_in_struct():
    # reproduces bug found by DC where Cython code was insisting on
    # ndarray return type, but getting sparse matrix
    st = {'sparsefield': SP.coo_matrix(np.eye(4))}
    stream = BytesIO()
    savemat_future(stream, {'a':st})
    d = loadmat(stream, struct_as_record=True)
    yield assert_array_equal, d['a'][0,0]['sparsefield'].todense(), np.eye(4)


def test_mat_struct_squeeze():
    stream = BytesIO()
    in_d = {'st':{'one':1, 'two':2}}
    savemat_future(stream, in_d)
    # no error without squeeze
    out_d = loadmat(stream, struct_as_record=False)
    # previous error was with squeeze, with mat_struct
    out_d = loadmat(stream,
                    struct_as_record=False,
                    squeeze_me=True,
                    )


def test_str_round():
    # from report by Angus McMorland on mailing list 3 May 2010
    stream = BytesIO()
    in_arr = np.array(['Hello', 'Foob'])
    out_arr = np.array(['Hello', 'Foob '])
    savemat_future(stream, dict(a=in_arr))
    res = loadmat(stream)
    # resulted in [u'HloolFoa', u'elWrdobr']
    assert_array_equal(res['a'], out_arr)
    stream.truncate(0)
    stream.seek(0)
    # Make Fortran ordered version of string
    in_str = in_arr.tostring(order='F')
    in_from_str = np.ndarray(shape=a.shape,
                             dtype=in_arr.dtype,
                             order='F',
                             buffer=in_str)
    savemat_future(stream, dict(a=in_from_str))
    assert_array_equal(res['a'], out_arr)
    # unicode save did lead to buffer too small error
    stream.truncate(0)
    stream.seek(0)
    in_arr_u = in_arr.astype('U')
    out_arr_u = out_arr.astype('U')
    savemat_future(stream, {'a': in_arr_u})
    res = loadmat(stream)
    assert_array_equal(res['a'], out_arr_u)


def test_fieldnames():
    # Check that field names are as expected
    stream = BytesIO()
    savemat_future(stream, {'a': {'a':1, 'b':2}})
    res = loadmat(stream)
    field_names = res['a'].dtype.names
    assert_equal(set(field_names), set(('a', 'b')))


def test_loadmat_varnames():
    # Test that we can get just one variable from a mat file using loadmat
    eg_file = pjoin(test_data_path, 'testmulti_7.4_GLNX86.mat')
    sys_v_names = ['__globals__',
                   '__header__',
                   '__version__']
    vars = loadmat(eg_file)
    assert_equal(set(vars.keys()), set(['a', 'theta'] + sys_v_names))
    vars = loadmat(eg_file, variable_names=['a'])
    assert_equal(set(vars.keys()), set(['a'] + sys_v_names))
    vars = loadmat(eg_file, variable_names=['theta'])
    assert_equal(set(vars.keys()), set(['theta'] + sys_v_names))


def test_round_types():
    # Check that saving, loading preserves dtype in most cases
    arr = np.arange(10)
    stream = BytesIO()
    for dts in ('f8','f4','i8','i4','i2','i1',
                'u8','u4','u2','u1','c16','c8'):
        stream.truncate(0)
        stream.seek(0) # needed for BytesIO in python 3
        savemat_future(stream, {'arr': arr.astype(dts)})
        vars = loadmat(stream)
        assert_equal(np.dtype(dts), vars['arr'].dtype)


def test_varmats_from_mat():
    # Make a mat file with several variables, write it, read it back
    names_vars = (('arr', mlarr(np.arange(10))),
                  ('mystr', mlarr('a string')),
                  ('mynum', mlarr(10)))
    # Dict like thing to give variables in defined order
    class C(object):
        def items(self): return names_vars
    stream = BytesIO()
    savemat_future(stream, C())
    varmats = varmats_from_mat(stream)
    assert_equal(len(varmats), 3)
    for i in range(3):
        name, var_stream = varmats[i]
        exp_name, exp_res = names_vars[i]
        assert_equal(name, exp_name)
        res = loadmat(var_stream)
        assert_array_equal(res[name], exp_res)


def test_one_by_zero():
    ''' Test 1x0 chars get read correctly '''
    func_eg = pjoin(test_data_path, 'one_by_zero_char.mat')
    rdr = MatFile5Reader_future(open(func_eg, 'rb'))
    d = rdr.get_variables()
    assert_equal(d['var'].shape, (0,))


if __name__ == "__main__":
    run_module_suite()