File: flapack_esv.pyf.src

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (268 lines) | stat: -rw-r--r-- 13,354 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
! -*- f90 -*-
!
! Contains wrappers for the following LAPACK routines:
!
!  Driver routines for standard eigenvalue and singular value problems:
!   syev, heev (SEP symmetric/hermitian, eigenvalues/vectors)
!   syevd, heevd (SEP symmetric/hermitian, eigenvalues/vectors, D&C)
!   syevx, heevx (.., expert) - Not Implemented
!   syevr, heevr (.., RRR)
!   spev, hpev, spevd, hpevd, spevx, hpevx (..., packed storage)  - Not Implemented
!   sbev, hbev, sbevd, hbevd, sbevx, hbevx (..., band)  - Not Implemented
!   stev, stevd, stevx, stevr (..., tridiagonal)  - Not Implemented
!   gees (NEP, general, Schur factorization)
!   geesx (NEP, general, Schur factorization, expert) - Not Implemented
!   geev (NEP, general, eigenvalues/vectors)
!   geevx (NEP, general, eigenvalues/vectors, expert) - Not Implemented
!   gesvd (SVD, general, singular values/vectors) - Not Implemented
!   gesdd (SVD, general, singular values/vectors, D&C)
!
!

   ! <sym=sy,\0,he,\2>

   subroutine <prefix><sym>ev(compute_v,lower,n,w,a,work,lwork,<_1=,,rwork\,,\2>info)

   ! w,v,info = syev(a,compute_v=1,lower=0,lwork=3*n-1,overwrite_a=0)
   ! Compute all eigenvalues and, optionally, eigenvectors of a
   ! real symmetric matrix A.
   !
   ! Performance tip:
   !   If compute_v=0 then set also overwrite_a=1.

   ! w,v,info = heev(a,compute_v=1,lower=0,lwork=2*n-1,overwrite_a=0)
   ! Compute all eigenvalues and, optionally, eigenvectors of a
   ! complex Hermitian matrix A.
   !
   ! Warning:
   !   If compute_v=0 and overwrite_a=1, the contents of a is destroyed.

     callstatement (*f2py_func)((compute_v?"V":"N"),(lower?"L":"U"),&n,a,&n,w,work,&lwork,<_2=,,rwork\,,\2>&info)
     callprotoargument char*,char*,int*,<ctype>*,int*,<ctypereal>*,<ctype>*,int*,<_3=,,float*\,,double*\,>int*

     integer optional,intent(in):: compute_v = 1
     check(compute_v==1||compute_v==0) compute_v
     integer optional,intent(in),check(lower==0||lower==1) :: lower = 0   

     integer intent(hide),depend(a):: n = shape(a,0)
     <ftype> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
     intent(in,copy,out,out=v) :: a

     <ftypereal> dimension(n),intent(out),depend(n) :: w

     ! <_lwork=3*n-1,\0,2*n-1,\2>
     integer optional,intent(in),depend(n) :: lwork=<_lwork>
     check(lwork>=<_lwork>) :: lwork
     <ftype> dimension(lwork),intent(hide,cache),depend(lwork) :: work

     <ftypereal> dimension(3*n-1),intent(hide,cache),depend(n) :: rwork

     integer intent(out) :: info
   end subroutine <prefix><sym>ev

   subroutine <prefix><sym>evd(compute_v,lower,n,w,a,work,lwork,iwork,liwork,<_1=,,rwork\,lrwork\,,\2>info)

   ! w,v,info = syevd(a,compute_v=1,lower=0,lwork=min_lwork,overwrite_a=0)
   ! Compute all eigenvalues and, optionally, eigenvectors of a
   ! real symmetric matrix A using D&C.
   !
   ! Performance tip:
   !   If compute_v=0 then set also overwrite_a=1.

   ! w,v,info = heevd(a,compute_v=1,lower=0,lwork=min_lwork,overwrite_a=0)
   ! Compute all eigenvalues and, optionally, eigenvectors of a
   ! complex Hermitian matrix A using D&C.
   !
   ! Warning:
   !   If compute_v=0 and overwrite_a=1, the contents of a is destroyed.

     callstatement (*f2py_func)((compute_v?"V":"N"),(lower?"L":"U"),&n,a,&n,w,work,&lwork,<_2=,,rwork\,&lrwork\,,\2>iwork,&liwork,&info)
     callprotoargument char*,char*,int*,<ctype>*,int*,<ctypereal>*,<ctype>*,int*,<_3=,,float*\,int*\,,double*\,int*\,>int*,int*,int*

     integer optional,intent(in):: compute_v = 1
     check(compute_v==1||compute_v==0) compute_v
     integer optional,intent(in),check(lower==0||lower==1) :: lower = 0   

     integer intent(hide),depend(a):: n = shape(a,0)
     <ftype> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
     intent(in,copy,out,out=v) :: a

     <ftypereal> dimension(n),intent(out),depend(n) :: w

     ! <_lwork=(compute_v?1+6*n+2*n*n:2*n+1),\0,(compute_v?2*n+n*n:n+1),\2>
     integer optional,intent(in),depend(n,compute_v) :: lwork=<_lwork>
     check(lwork>=<_lwork>) :: lwork
     <ftype> dimension(lwork),intent(hide,cache),depend(lwork) :: work

     integer intent(hide),depend(n,compute_v) :: liwork = (compute_v?3+5*n:1)
     integer dimension(liwork),intent(hide,cache),depend(liwork) :: iwork

     ! <_lrwork=,,(compute_v?1+5*n+2*n*n:n),\2>
     integer intent(hide),depend(n,compute_v) :: lrwork = <_lrwork>
     <ftypereal> dimension(lrwork),intent(hide,cache),depend(n,lrwork) :: rwork

     integer intent(out) :: info
   end subroutine <prefix><sym>evd

   subroutine <prefix><sym>evr(n,a,compute_v,lower,vrange,irange,atol,w,z,m,ldz,isuppz,work,lwork,<,,rwork\,lrwork\,,\2>iwork,liwork,info)

   !  w,v,info = {sy|he}evr(a,compute_v=1,lower=0,vrange=None,irange=None,atol=-1,lwork=min_lwork,overwrite_a=0)
   !
   ! Compute range of eigenvalues and, optionally, eigenvectors of a
   ! real symmetric matrix A using RRR.
   !
   ! Performance tip:
   !   If compute_v=0 then set also overwrite_a=1.
   ! Warning:
   !   If compute_v=0 and overwrite_a=1, the contents of a is destroyed.

     callstatement if(irange_capi==Py_None);else{irange[0]++;irange[1]++;}(*f2py_func)((compute_v?"V":"N"),(vrange_capi==Py_None?(irange_capi==Py_None?"A":"I"):"V"),(lower?"L":"U"),&n,a,&n,vrange,vrange+1,irange,irange+1,&atol,&m,w,z,&ldz,isuppz,work,&lwork,<_2=,,rwork\,&lrwork\,,\2>iwork,&liwork,&info);if(irange_capi==Py_None);else{irange[0]--;irange[1]--;}if(vrange_capi==Py_None);else {capi_w_tmp-\>dimensions[0]=capi_z_tmp-\>dimensions[1]=m;/*capi_z_tmp-\>strides[0]=m*capi_z_tmp-\>descr-\>elsize;*/}

     callprotoargument char*,char*,char*,int*,<ctype>*,int*,<ctypereal>*,<ctypereal>*,int*,int*,<ctypereal>*,int*,<ctypereal>*,<ctype>*,int*,int*,<ctype>*,int*,<_3=,,float*\,int*\,,double*\,int*\,>int*,int*,int*

     integer optional,intent(in):: compute_v = 1
     check(compute_v==1||compute_v==0) compute_v
     integer optional,intent(in),check(lower==0||lower==1) :: lower = 0   

     integer intent(hide),depend(a):: n = shape(a,0)
     <ftype> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
     intent(in,copy) :: a

     <ftypereal> optional,dimension(2),intent(in) :: vrange
     integer optional,dimension(2),intent(in),depend(n) :: irange
     check(irange_capi==Py_None || (irange[0]>=0 && irange[1]<n)) irange

     <ftypereal> optional,intent(in) :: atol = -1.0

     integer intent(hide),depend(vrange,irange,n) :: m = (irange_capi==Py_None?n:irange[1]-irange[0]+1)

     <ftypereal> dimension(m),intent(out),depend(m) :: w

     integer intent(hide),depend(compute_v,n) :: ldz = (compute_v?n:1)
     <ftype> dimension(ldz,m),intent(out,out=v),depend(ldz,m) :: z

     integer intent(hide),depend(m),dimension(2*m) :: isuppz

     ! <_lwork=26*n,\0,18*n,\2>  Includes bug fix in `man zheevr`.
     integer optional,intent(in),depend(n) :: lwork=<_lwork>
     check(lwork>=<_lwork>) lwork
     <ftype> dimension(lwork),intent(hide,cache),depend(lwork) :: work

     integer intent(hide),depend(n,compute_v) :: liwork = 10*n
     integer dimension(liwork),intent(hide,cache),depend(liwork) :: iwork

     ! <_lrwork=,,24*n,\2>
     integer intent(hide),depend(n) :: lrwork = <_lrwork>
     <ftypereal> dimension(lrwork),intent(hide,cache),depend(n,lrwork) :: rwork

     integer intent(out) :: info
   end subroutine <prefix><sym>evr

   subroutine <prefix>gees(compute_v,sort_t,<prefix>select,n,a,nrows,sdim,<wr\,wi,\0,w,\2>,vs,ldvs,work,lwork,<,,rwork\,,\2>bwork,info)

     !  t,sdim,(wr,wi|w),vs,info = gees(zselect,a,compute_v=1,sort_t=0,lwork=3*n,zselect_extra_args=(),overwrite_a=0)
     ! For an NxN matrix compute the eigenvalues, the schur form T, and optionally
     !  the matrix of Schur vectors Z.  This gives the Schur factorization 
     !  A = Z * T * Z^H  -- a complex matrix is in Schur form if it is upper 
     !  triangular

     ! t,sdim,wr,wi,vs,info=gees(compute_v=1,sort_t=0,select,a,lwork=3*n)
     ! For an NxN matrix compute the eigenvalues, the schur form T, and optionally
     !  the matrix of Schur vectors Z.  This gives the Schur factorization 
     !  A = Z * T * Z^H  -- a real matrix is in Schur form if it is upper quasi-
     !  triangular with 1x1 and 2x2 blocks.

     callstatement (*f2py_func)((compute_v?"V":"N"),(sort_t?"S":"N"),cb_<prefix>select_in_gees__user__routines,&n,a,&nrows,&sdim,<wr\,wi,\0,w,\2>,vs,&ldvs,work,&lwork,<,,rwork\,,\2>bwork,&info,1,1)
     callprotoargument char*,char*,int(*)(<float*\,float*,double*\,double*,complex_float*,complex_double*>),int*,<ctype>*,int*,int*,<ctype>*,<float*\,,double*\,,,><ctype>*,int*,<ctype>*,int*,<,,float*\,,double*\,>int*,int*,int,int

     use gees__user__routines

     integer optional,intent(in),check(compute_v==0||compute_v==1) :: compute_v = 1
     integer optional,intent(in),check(sort_t==0||sort_t==1) :: sort_t = 0
     external <prefix>select
     integer intent(hide),depend(a) :: n = shape(a,1)
     <ftype> intent(in,out,copy,out=t),check(shape(a,0)==shape(a,1)),dimension(n,n) :: a
     integer intent(hide),depend(a) :: nrows=shape(a,0)
     integer intent(out) :: sdim=0
     <ftype> intent(out),dimension(n) :: <wr\,wi,\0,w,\2>
     <ftype> intent(out),depend(ldvs,n),dimension(ldvs,n) :: vs
     integer intent(hide),depend(compute_v,n) :: ldvs=((compute_v==1)?n:1)
     <ftype> intent(hide,cache),depend(lwork),dimension(lwork) :: work
     integer optional,intent(in),check(lwork >= MAX(1,3*n)),depend(n) :: lwork = 3*n
     <ftypereal> intent(hide,cache),depend(n),dimension(n) :: rwork
     logical intent(hide,cache),depend(n),dimension(n) :: bwork
     integer intent(out) :: info
   end subroutine <prefix>gees

   subroutine <prefix>geev(compute_vl,compute_vr,n,a,<wr\,wi,\0,w,\2>,vl,ldvl,vr,ldvr,work,lwork,<,,rwork\,,\2>info)

     ! wr,wi,vl,vr,info = geev(a,compute_vl=1,compute_vr=1,lwork=4*n,overwrite_a=0)
     ! w,vl,vr,info = geev(a,compute_vl=1,compute_vr=1,lwork=2*n,overwrite_a=0)

     callstatement {(*f2py_func)((compute_vl?"V":"N"),(compute_vr?"V":"N"),&n,a,&n,<wr\,wi,\0,w,\2>,vl,&ldvl,vr,&ldvr,work,&lwork,<,,rwork\,,\2>&info);}
     callprotoargument char*,char*,int*,<ctype>*,int*,<ctype>*,<float*\,,double*\,,,><ctype>*,int*,<ctype>*,int*,<ctype>*,int*,<,,float*\,,double*\,>int*

     integer optional,intent(in):: compute_vl = 1
     check(compute_vl==1||compute_vl==0) compute_vl
     integer optional,intent(in):: compute_vr = 1
     check(compute_vr==1||compute_vr==0) compute_vr

     integer intent(hide),depend(a) :: n = shape(a,0)
     <ftype>  dimension(n,n),intent(in,copy) :: a
     check(shape(a,0)==shape(a,1)) :: a

     <ftype>  dimension(n),intent(out),depend(n) :: <wr\,wi,\0,w,\2>

     <ftype>  dimension(ldvl,n),intent(out) :: vl
     integer intent(hide),depend(n,compute_vl) :: ldvl=(compute_vl?n:1)

     <ftype>  dimension(ldvr,n),intent(out) :: vr
     integer intent(hide),depend(n,compute_vr) :: ldvr=(compute_vr?n:1)

     ! <_lwork=(compute_vl||compute_vr)?4*n:3*n,\0,2*n,\2>
     integer optional,intent(in),depend(n,compute_vl,compute_vr) :: lwork=<_lwork>
     check(lwork>=<_lwork>) :: lwork
     <ftype> dimension(lwork),intent(hide,cache),depend(lwork) :: work
     <ftypereal> dimension(2*n),intent(hide,cache),depend(n) :: rwork

     integer intent(out):: info
   end subroutine <prefix>geev

   subroutine <prefix>gesdd(m,n,minmn,du,dvt,a,compute_uv,u,s,vt,work,lwork,<,,rwork\,,\2>iwork,info)
   
   ! u,s,vh,info = gesdd(a,compute_uv=1,lwork=..,overwrite_a=0)
   ! Compute the singular value decomposition (SVD):
   !   A = U * SIGMA * conjugate-transpose(V)
   ! A - M x N matrix
   ! U - M x M matrix
   ! SIGMA - M x N zero matrix with a main diagonal filled with min(M,N) 
   !               singular values  
   ! conjugate-transpose(V) - N x N matrix
   !

   callstatement (*f2py_func)((compute_uv?"A":"N"),&m,&n,a,&m,s,u,&du,vt,&dvt,work,&lwork,<,,rwork\,,\2>iwork,&info)
   callprotoargument char*,int*,int*,<ctype>*,int*,<ctypereal>*,<ctype>*,int*,<ctype>*,int*,<ctype>*,int*,<,,float*\,,double*\,>int*,int*

   integer intent(in),optional,check(compute_uv==0||compute_uv==1):: compute_uv = 1
   integer intent(hide),depend(a):: m = shape(a,0)
   integer intent(hide),depend(a):: n = shape(a,1)
   integer intent(hide),depend(m,n):: minmn = MIN(m,n)
   integer intent(hide),depend(compute_uv,minmn) :: du = (compute_uv?m:1)
   integer intent(hide),depend(compute_uv,n) :: dvt = (compute_uv?n:1)
   <ftype> dimension(m,n),intent(in,copy) :: a
   <ftypereal> dimension(minmn),intent(out),depend(minmn) :: s
   <ftype> dimension(du,du),intent(out),depend(du) :: u
   <ftype> dimension(dvt,dvt),intent(out),depend(dvt) :: vt
   <ftype> dimension(lwork),intent(hide,cache),depend(lwork) :: work

   ! <_lwork=(compute_uv?4*minmn*minmn+MAX(m\,n)+9*minmn:MAX(14*minmn+4\,10*minmn+827)+MAX(m\,n)),\0,(compute_uv?2*minmn*minmn+MAX(m\,n)+2*minmn:2*minmn+MAX(m\,n)),\2>
   integer optional,intent(in),depend(minmn,compute_uv) &
        :: lwork = <_lwork>
   ! gesdd docs are mess: optimal turns out to be less than minimal in docs
   ! check(lwork>=(compute_uv?3*minmn*minmn+MAX(MAX(m,n),4*minmn*(minmn+1)):MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n))) :: lwork
   <ftypereal> dimension((compute_uv?5*minmn*minmn+7*minmn:5*minmn)),intent(hide,cache),depend(minmn,compute_uv) :: rwork

   integer intent(hide,cache),dimension(8*minmn),depend(minmn) :: iwork
   integer intent(out)::info

   end subroutine <prefix>gesdd