File: flapack_evc.pyf.src

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (82 lines) | stat: -rw-r--r-- 3,693 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
! -*- f90 -*-
!
! Contains wrappers for the following LAPACK routines:
!
!  Computational routines for the non-symmetric eigenproblem:
!
!   gehrd (general Hessenberg reduction)
!   gebal (general balancing)
!   gebak (general backtransforming)
!   orghr, unghr (orthogonal/unitary generate matrix after Hessenberg reduction) - Not Implemented
!   ormhr, unmhr ((orthogonal/unitary multiply matrix after Hessenberg reduction) - Not Implemented
!   hseqr (Hessenberg Schur factorization) - Not Implemented
!   hsein (Hessenberg eigenvectors by inverse iteration) - Not Implemented
!   trevc ((quasi)triangular eigenvectors) - Not Implemented
!   trexc ((quasi)triangular reordering Schur factorization) - Not Implemented
!   trsyl ((quasi)triangular Sylvester equation) - Not Implemented
!   trsna ((quasi)triangular condition numbers of eigenvalues/vectors) - Not Implemented
!   trsen ((quasi)triangular condition numbers of eigenvalue cluster/invariant subspace) - Not Implemented
!

   subroutine <prefix>gehrd(n,lo,hi,a,tau,work,lwork,info)
   !
   ! hq,tau,info = gehrd(a,lo=0,hi=n-1,lwork=n,overwrite_a=0)
   ! Reduce general matrix A to upper Hessenberg form H by unitary similarity
   ! transform Q^H * A * Q = H
   !
   ! Q = H(lo) * H(lo+1) * ... * H(hi-1)
   ! H(i) = I - tau * v * v^H
   ! v[0:i+1] = 0, v[i+1]=1, v[hi+1:n] = 0
   ! v[i+2:hi+1] is stored in hq[i+2:hi+i,i]
   ! tau is tau[i]
   !
   ! hq for n=7,lo=1,hi=5:
   ! [a a h h h h a
   !    a h h h h a
   !    h h h h h h
   !    v2h h h h h
   !    v2v3h h h h
   !    v2v3v4h h h
   !              a]
   !
     callstatement { hi++; lo++; (*f2py_func)(&n,&lo,&hi,a,&n,tau,work,&lwork,&info); }
     callprotoargument int*,int*,int*,<ctype>*,int*,<ctype>*,<ctype>*,int*,int*
     integer intent(hide),depend(a) :: n = shape(a,0)
     <ftype> dimension(n,n),intent(in,out,copy,out=ht),check(shape(a,0)==shape(a,1)) :: a
     integer intent(in),optional :: lo = 0
     integer intent(in),optional,depend(n) :: hi = n-1
     <ftype> dimension(n-1),intent(out),depend(n) :: tau
     <ftype> dimension(lwork),intent(cahce,hide),depend(lwork) :: work
     integer intent(in),optional,depend(n),check(lwork>=MAX(n,1)) :: lwork = MAX(n,1)
     integer intent(out) :: info

   end subroutine <prefix>gehrd

   subroutine <prefix>gebal(scale,permute,n,a,m,lo,hi,pivscale,info)
   !
   ! ba,lo,hi,pivscale,info = gebal(a,scale=0,permute=0,overwrite_a=0)
   ! Balance general matrix a.
   ! hi,lo are such that ba[i][j]==0 if i>j and j=0...lo-1 or i=hi+1..n-1
   ! pivscale([0:lo], [lo:hi+1], [hi:n+1]) = (p1,d,p2) where (p1,p2)[j] is
   ! the index of the row and column interchanged with row and column j. 
   ! d[j] is the scaling factor applied to row and column j.
   ! The order in which the interchanges are made is n-1 to hi+1, then 0 to lo-1.
   !
   ! P * A * P = [[T1,X,Y],[0,B,Z],[0,0,T2]]
   ! BA = [[T1,X*D,Y],[0,inv(D)*B*D,ind(D)*Z],[0,0,T2]]
   ! where D = diag(d), T1,T2 are upper triangular matrices.
   ! lo,hi mark the starting and ending columns of submatrix B.

     callstatement { (*f2py_func)((permute?(scale?"B":"P"):(scale?"S":"N")),&n,a,&m,&lo,&hi,pivscale,&info); hi--; lo--; }
     callprotoargument char*,int*,<ctype>*,int*,int*,int*,<ctypereal>*,int*
     integer intent(in),optional :: permute = 0
     integer intent(in),optional :: scale = 0
     integer intent(hide),depend(a,n) :: m = shape(a,0)
     integer intent(hide),depend(a) :: n = shape(a,1)
     check(m>=n) m
     integer intent(out) :: hi,lo
     <ftypereal> dimension(n),intent(out),depend(n) :: pivscale
     <ftype> dimension(m,n),intent(in,out,copy,out=ba) :: a
     integer intent(out) :: info

   end subroutine <prefix>gebal