1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
! -*- f90 -*-
!
! Contains wrappers for the following LAPACK routines:
!
! Computational routines for linear equations:
!
! getrf (general, factorize)
! getrs (general, solve)
! gecon (general, estimate condition number) - Not Implemented
! gerfs (general, error bounds) - Not Implemented
! getri (general, invert)
! geequ (general, equilibrate) - Not Implemented
! gbtrf, gbtrs, gbcon, gbrfs, gbequ (general band) - Not Implemented
! gttrf, gttrs, gtcon, gtrfs (general tridiagonal) - Not Implemented
! potrf (symmetric/Hermitian positive, factorize)
! potrs (symmetric/Hermitian positive, solve)
! pocon (symmetric/Hermitian positive, estimate condition number) - Not Implemented
! porfs (symmetric/Hermitian positive, error bounds) - Not Implemented
! potri (symmetric/Hermitian positive, invert)
! poequ (symmetric/Hermitian positive, equilibrate) - Not Implemented
! pptrf, pptrs, ppcon, pprfs, pptri, ppequ (symmetric/Hermitian positive packed storage) - Not Implemented
! pbtrf, pbtrs, pbcon, pbrfs, pbequ (symmetric/Hermitian positive band) - Not Implemented
! pttrf, pttrs, ptcon, ptrfs (symmetric/Hermitian positive tridiagonal) - Not Implemented
! sytrf, sytrs, sycon, syrfs, sytri (symmetric indefinite) - Not Implemented
! hetrf, hetrs, hecon, herfs, hetri (Hermitian indefinite) - Not Implemented
! sptrf, sptrs, spcon, sprfs, sptri (symmetric indefinite packed storage) - Not Implemented
! hptrf, hptrs, hpcon, hprfs, hptri (Hermitian indefinite packed storage) - Not Implemented
! trtrs (triangular, solve) - Not Implemented
! trcon (triangular, estimate condition number) - Not Implemented
! trrfs (triangular, error bounds) - Not Implemented
! trtri (triangular, invert)
! tptrs, tpcon, tprfs, tptri (triangular packed storage) - Not Implemented
! tbtrs, tbcon, tbrfs (triangular band) - Not Implemented
!
! Factorize
! =========
subroutine <prefix>getrf(m,n,a,piv,info)
! lu,piv,info = getrf(a,overwrite_a=0)
! Compute an LU factorization of a general M-by-N matrix A.
! A = P * L * U
threadsafe
callstatement {int i;(*f2py_func)(&m,&n,a,&m,piv,&info);for(i=0,n=MIN(m,n);i\<n;--piv[i++]);}
callprotoargument int*,int*,<ctype>*,int*,int*,int*
integer depend(a),intent(hide):: m = shape(a,0)
integer depend(a),intent(hide):: n = shape(a,1)
<ftype> dimension(m,n),intent(in,out,copy,out=lu) :: a
integer dimension(MIN(m,n)),depend(m,n),intent(out) :: piv
integer intent(out):: info
end subroutine <prefix>getrf
subroutine <prefix>potrf(n,a,info,lower,clean)
! c,info = potrf(a,lower=0,clean=1,overwrite_a=0)
! Compute Cholesky decomposition of symmetric positive defined matrix:
! A = U^T * U, C = U if lower = 0
! A = L * L^T, C = L if lower = 1
! C is triangular matrix of the corresponding Cholesky decomposition.
! clean==1 zeros strictly lower or upper parts of U or L, respectively
! <_def=,,\,k,\2>
! <_init1=*(a+j*n+i)=0.0;,\0,k=j*n+i;(*(a+k)).r=(*(a+k)).i=0.0;,\2>
! <_init2=*(a+i*n+j)=0.0;,\0,k=i*n+j;(*(a+k)).r=(*(a+k)).i=0.0;,\2>
callstatement (*f2py_func)((lower?"L":"U"),&n,a,&n,&info); if(clean){int i,j<_def>;if(lower){for(i=0;i\<n;++i) for(j=i+1;j\<n;++j) {<_init1>}} else {for(i=0;i\<n;++i) for(j=i+1;j\<n;++j) {<_init2>}}}
callprotoargument char*,int*,<ctype>*,int*,int*
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
integer optional,intent(in),check(clean==0||clean==1) :: clean = 1
integer depend(a),intent(hide):: n = shape(a,0)
<ftype> dimension(n,n),intent(in,out,copy,out=c) :: a
check(shape(a,0)==shape(a,1)) :: a
integer intent(out) :: info
end subroutine <prefix>potrf
!
! Solve using factorization
! =========================
subroutine <prefix>getrs(n,nrhs,lu,piv,b,info,trans)
! x,info = getrs(lu,piv,b,trans=0,overwrite_b=0)
! Solve A * X = B if trans=0
! Solve A^T * X = B if trans=1
! Solve A^H * X = B if trans=2
! A = P * L * U
threadsafe
callstatement {int i;for(i=0;i\<n;++piv[i++]);(*f2py_func)((trans?(trans==2?"C":"T"):"N"),&n,&nrhs,lu,&n,piv,b,&n,&info);for(i=0;i\<n;--piv[i++]);}
callprotoargument char*,int*,int*,<ctype>*,int*,int*,<ctype>*,int*,int*
integer optional,intent(in),check(trans>=0 && trans \<=2) :: trans = 0
integer depend(lu),intent(hide):: n = shape(lu,0)
integer depend(b),intent(hide):: nrhs = shape(b,1)
<ftype> dimension(n,n),intent(in) :: lu
check(shape(lu,0)==shape(lu,1)) :: lu
integer dimension(n),intent(in),depend(n) :: piv
<ftype> dimension(n,nrhs),intent(in,out,copy,out=x),depend(n),check(shape(lu,0)==shape(b,0)) :: b
integer intent(out):: info
end subroutine <prefix>getrs
subroutine <prefix>potrs(n,nrhs,c,b,info,lower)
! x,info = potrs(c,b,lower=0=1,overwrite_b=0)
! Solve A * X = B.
! A is symmetric positive defined
! A = U^T * U, C = U if lower = 0
! A = L * L^T, C = L if lower = 1
! C is triangular matrix of the corresponding Cholesky decomposition.
callstatement (*f2py_func)((lower?"L":"U"),&n,&nrhs,c,&n,b,&n,&info)
callprotoargument char*,int*,int*,<ctype>*,int*,<ctype>*,int*,int*
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
integer depend(c),intent(hide):: n = shape(c,0)
integer depend(b),intent(hide):: nrhs = shape(b,1)
<ftype> dimension(n,n),intent(in) :: c
check(shape(c,0)==shape(c,1)) :: c
<ftype> dimension(n,nrhs),intent(in,out,copy,out=x),depend(n):: b
check(shape(c,0)==shape(b,0)) :: b
integer intent(out) :: info
end subroutine <prefix>potrs
!
! Invert using factorization
! ==========================
subroutine <prefix>getri(n,lu,piv,work,lwork,info)
! inv_a,info = getri(lu,piv,lwork=3*n,overwrite_lu=0)
! Find A inverse A^-1.
! A = P * L * U
callstatement {int i;for(i=0;i\<n;++piv[i++]);(*f2py_func)(&n,lu,&n,piv,work,&lwork,&info);for(i=0;i\<n;--piv[i++]);}
callprotoargument int*,<ctype>*,int*,int*,<ctype>*,int*,int*
integer depend(lu),intent(hide):: n = shape(lu,0)
<ftype> dimension(n,n),intent(in,out,copy,out=inv_a) :: lu
check(shape(lu,0)==shape(lu,1)) :: lu
integer dimension(n),intent(in),depend(n) :: piv
integer intent(out):: info
integer optional,intent(in),depend(n),check(lwork>=n) :: lwork=3*n
<ftype> dimension(lwork),intent(hide,cache),depend(lwork) :: work
end subroutine <prefix>getri
subroutine <prefix>potri(n,c,info,lower)
! inv_a,info = potri(c,lower=0,overwrite_c=0)
! Compute A inverse A^-1.
! A = U^T * U, C = U if lower = 0
! A = L * L^T, C = L if lower = 1
! C is triangular matrix of the corresponding Cholesky decomposition.
callstatement (*f2py_func)((lower?"L":"U"),&n,c,&n,&info)
callprotoargument char*,int*,<ctype>*,int*,int*
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
integer depend(c),intent(hide):: n = shape(c,0)
<ftype> dimension(n,n),intent(c,in,out,copy,out=inv_a) :: c
check(shape(c,0)==shape(c,1)) :: c
integer intent(out) :: info
end subroutine <prefix>potri
subroutine <prefix>trtri(n,c,info,lower,unitdiag)
! inv_c,info = trtri(c,lower=0,unitdiag=1,overwrite_c=0)
! Compute C inverse C^-1 where
! C = U if lower = 0
! C = L if lower = 1
! C is non-unit triangular matrix if unitdiag = 0
! C is unit triangular matrix if unitdiag = 1
callstatement (*f2py_func)((lower?"L":"U"),(unitdiag?"U":"N"),&n,c,&n,&info)
callprotoargument char*,char*,int*,<ctype>*,int*,int*
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
integer optional,intent(in),check(unitdiag==0||unitdiag==1) :: unitdiag = 0
integer depend(c),intent(hide):: n = shape(c,0)
<ftype> dimension(n,n),intent(in,out,copy,out=inv_c) :: c
check(shape(c,0)==shape(c,1)) :: c
integer intent(out) :: info
end subroutine <prefix>trtri
|