1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
#
# Author: Pearu Peterson, March 2002
#
# w/ additions by Travis Oliphant, March 2002
__all__ = ['solve', 'solve_triangular', 'solveh_banded', 'solve_banded',
'inv', 'det', 'lstsq', 'pinv', 'pinv2']
import numpy as np
from flinalg import get_flinalg_funcs
from lapack import get_lapack_funcs
from misc import LinAlgError, _datacopied
from scipy.linalg import calc_lwork
import decomp_svd
# Linear equations
def solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False,
debug=False):
"""Solve the equation a x = b for x
Parameters
----------
a : array, shape (M, M)
b : array, shape (M,) or (M, N)
sym_pos : boolean
Assume a is symmetric and positive definite
lower : boolean
Use only data contained in the lower triangle of a, if sym_pos is true.
Default is to use upper triangle.
overwrite_a : boolean
Allow overwriting data in a (may enhance performance)
overwrite_b : boolean
Allow overwriting data in b (may enhance performance)
Returns
-------
x : array, shape (M,) or (M, N) depending on b
Solution to the system a x = b
Raises LinAlgError if a is singular
"""
a1, b1 = map(np.asarray_chkfinite,(a,b))
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
if a1.shape[0] != b1.shape[0]:
raise ValueError('incompatible dimensions')
overwrite_a = overwrite_a or _datacopied(a1, a)
overwrite_b = overwrite_b or _datacopied(b1, b)
if debug:
print 'solve:overwrite_a=',overwrite_a
print 'solve:overwrite_b=',overwrite_b
if sym_pos:
posv, = get_lapack_funcs(('posv',), (a1,b1))
c, x, info = posv(a1, b1, lower=lower,
overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
else:
gesv, = get_lapack_funcs(('gesv',), (a1,b1))
lu, piv, x, info = gesv(a1, b1, overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
if info == 0:
return x
if info > 0:
raise LinAlgError("singular matrix")
raise ValueError('illegal value in %d-th argument of internal gesv|posv'
% -info)
def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False,
overwrite_b=False, debug=False):
"""Solve the equation `a x = b` for `x`, assuming a is a triangular matrix.
Parameters
----------
a : array, shape (M, M)
b : array, shape (M,) or (M, N)
lower : boolean
Use only data contained in the lower triangle of a.
Default is to use upper triangle.
trans : {0, 1, 2, 'N', 'T', 'C'}
Type of system to solve:
======== =========
trans system
======== =========
0 or 'N' a x = b
1 or 'T' a^T x = b
2 or 'C' a^H x = b
======== =========
unit_diagonal : boolean
If True, diagonal elements of A are assumed to be 1 and
will not be referenced.
overwrite_b : boolean
Allow overwriting data in b (may enhance performance)
Returns
-------
x : array, shape (M,) or (M, N) depending on b
Solution to the system a x = b
Raises
------
LinAlgError
If a is singular
Notes
-----
.. versionadded:: 0.9.0
"""
a1, b1 = map(np.asarray_chkfinite,(a,b))
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
if a1.shape[0] != b1.shape[0]:
raise ValueError('incompatible dimensions')
overwrite_b = overwrite_b or _datacopied(b1, b)
if debug:
print 'solve:overwrite_b=',overwrite_b
trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans)
trtrs, = get_lapack_funcs(('trtrs',), (a1,b1))
x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower,
trans=trans, unitdiag=unit_diagonal)
if info == 0:
return x
if info > 0:
raise LinAlgError("singular matrix: resolution failed at diagonal %s" % (info-1))
raise ValueError('illegal value in %d-th argument of internal trtrs')
def solve_banded((l, u), ab, b, overwrite_ab=False, overwrite_b=False,
debug=False):
"""
Solve the equation a x = b for x, assuming a is banded matrix.
The matrix a is stored in ab using the matrix diagonal ordered form::
ab[u + i - j, j] == a[i,j]
Example of ab (shape of a is (6,6), u=1, l=2)::
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
Parameters
----------
(l, u) : (integer, integer)
Number of non-zero lower and upper diagonals
ab : array, shape (l+u+1, M)
Banded matrix
b : array, shape (M,) or (M, K)
Right-hand side
overwrite_ab : boolean
Discard data in ab (may enhance performance)
overwrite_b : boolean
Discard data in b (may enhance performance)
Returns
-------
x : array, shape (M,) or (M, K)
The solution to the system a x = b
"""
a1, b1 = map(np.asarray_chkfinite, (ab, b))
# Validate shapes.
if a1.shape[-1] != b1.shape[0]:
raise ValueError("shapes of ab and b are not compatible.")
if l + u + 1 != a1.shape[0]:
raise ValueError("invalid values for the number of lower and upper diagonals:"
" l+u+1 (%d) does not equal ab.shape[0] (%d)" % (l+u+1, ab.shape[0]))
overwrite_b = overwrite_b or _datacopied(b1, b)
gbsv, = get_lapack_funcs(('gbsv',), (a1, b1))
a2 = np.zeros((2*l+u+1, a1.shape[1]), dtype=gbsv.dtype)
a2[l:,:] = a1
lu, piv, x, info = gbsv(l, u, a2, b1, overwrite_ab=True,
overwrite_b=overwrite_b)
if info == 0:
return x
if info > 0:
raise LinAlgError("singular matrix")
raise ValueError('illegal value in %d-th argument of internal gbsv' % -info)
def solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False):
"""Solve equation a x = b. a is Hermitian positive-definite banded matrix.
The matrix a is stored in ab either in lower diagonal or upper
diagonal ordered form:
ab[u + i - j, j] == a[i,j] (if upper form; i <= j)
ab[ i - j, j] == a[i,j] (if lower form; i >= j)
Example of ab (shape of a is (6,6), u=2)::
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
Cells marked with * are not used.
Parameters
----------
ab : array, shape (u + 1, M)
Banded matrix
b : array, shape (M,) or (M, K)
Right-hand side
overwrite_ab : boolean
Discard data in ab (may enhance performance)
overwrite_b : boolean
Discard data in b (may enhance performance)
lower : boolean
Is the matrix in the lower form. (Default is upper form)
Returns
-------
x : array, shape (M,) or (M, K)
The solution to the system a x = b
"""
ab, b = map(np.asarray_chkfinite, (ab, b))
# Validate shapes.
if ab.shape[-1] != b.shape[0]:
raise ValueError("shapes of ab and b are not compatible.")
pbsv, = get_lapack_funcs(('pbsv',), (ab, b))
c, x, info = pbsv(ab, b, lower=lower, overwrite_ab=overwrite_ab,
overwrite_b=overwrite_b)
if info > 0:
raise LinAlgError("%d-th leading minor not positive definite" % info)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal pbsv'
% -info)
return x
# matrix inversion
def inv(a, overwrite_a=False):
"""
Compute the inverse of a matrix.
Parameters
----------
a : array_like
Square matrix to be inverted.
overwrite_a : bool, optional
Discard data in `a` (may improve performance). Default is False.
Returns
-------
ainv : ndarray
Inverse of the matrix `a`.
Raises
------
LinAlgError :
If `a` is singular.
ValueError :
If `a` is not square, or not 2-dimensional.
Examples
--------
>>> a = np.array([[1., 2.], [3., 4.]])
>>> sp.linalg.inv(a)
array([[-2. , 1. ],
[ 1.5, -0.5]])
>>> np.dot(a, sp.linalg.inv(a))
array([[ 1., 0.],
[ 0., 1.]])
"""
a1 = np.asarray_chkfinite(a)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or _datacopied(a1, a)
#XXX: I found no advantage or disadvantage of using finv.
## finv, = get_flinalg_funcs(('inv',),(a1,))
## if finv is not None:
## a_inv,info = finv(a1,overwrite_a=overwrite_a)
## if info==0:
## return a_inv
## if info>0: raise LinAlgError, "singular matrix"
## if info<0: raise ValueError,\
## 'illegal value in %d-th argument of internal inv.getrf|getri'%(-info)
getrf, getri = get_lapack_funcs(('getrf','getri'), (a1,))
#XXX: C ATLAS versions of getrf/i have rowmajor=1, this could be
# exploited for further optimization. But it will be probably
# a mess. So, a good testing site is required before trying
# to do that.
if getrf.module_name[:7] == 'clapack' != getri.module_name[:7]:
# ATLAS 3.2.1 has getrf but not getri.
lu, piv, info = getrf(np.transpose(a1), rowmajor=0,
overwrite_a=overwrite_a)
lu = np.transpose(lu)
else:
lu, piv, info = getrf(a1, overwrite_a=overwrite_a)
if info == 0:
if getri.module_name[:7] == 'flapack':
lwork = calc_lwork.getri(getri.prefix, a1.shape[0])
lwork = lwork[1]
# XXX: the following line fixes curious SEGFAULT when
# benchmarking 500x500 matrix inverse. This seems to
# be a bug in LAPACK ?getri routine because if lwork is
# minimal (when using lwork[0] instead of lwork[1]) then
# all tests pass. Further investigation is required if
# more such SEGFAULTs occur.
lwork = int(1.01 * lwork)
inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1)
else: # clapack
inv_a, info = getri(lu, piv, overwrite_lu=1)
if info > 0:
raise LinAlgError("singular matrix")
if info < 0:
raise ValueError('illegal value in %d-th argument of internal '
'getrf|getri' % -info)
return inv_a
### Determinant
def det(a, overwrite_a=False):
"""Compute the determinant of a matrix
Parameters
----------
a : array, shape (M, M)
Returns
-------
det : float or complex
Determinant of a
Notes
-----
The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
"""
a1 = np.asarray_chkfinite(a)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or _datacopied(a1, a)
fdet, = get_flinalg_funcs(('det',), (a1,))
a_det, info = fdet(a1, overwrite_a=overwrite_a)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal '
'det.getrf' % -info)
return a_det
### Linear Least Squares
def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False):
"""
Compute least-squares solution to equation Ax = b.
Compute a vector x such that the 2-norm ``|b - A x|`` is minimized.
Parameters
----------
a : array, shape (M, N)
Left hand side matrix (2-D array).
b : array, shape (M,) or (M, K)
Right hand side matrix or vector (1-D or 2-D array).
cond : float, optional
Cutoff for 'small' singular values; used to determine effective
rank of a. Singular values smaller than
``rcond * largest_singular_value`` are considered zero.
overwrite_a : bool, optional
Discard data in `a` (may enhance performance). Default is False.
overwrite_b : bool, optional
Discard data in `b` (may enhance performance). Default is False.
Returns
-------
x : array, shape (N,) or (N, K) depending on shape of b
Least-squares solution.
residues : ndarray, shape () or (1,) or (K,)
Sums of residues, squared 2-norm for each column in ``b - a x``.
If rank of matrix a is < N or > M this is an empty array.
If b was 1-D, this is an (1,) shape array, otherwise the shape is (K,).
rank : int
Effective rank of matrix `a`.
s : array, shape (min(M,N),)
Singular values of `a`. The condition number of a is
``abs(s[0]/s[-1])``.
Raises
------
LinAlgError :
If computation does not converge.
See Also
--------
optimize.nnls : linear least squares with non-negativity constraint
"""
a1, b1 = map(np.asarray_chkfinite, (a, b))
if len(a1.shape) != 2:
raise ValueError('expected matrix')
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
if m != b1.shape[0]:
raise ValueError('incompatible dimensions')
gelss, = get_lapack_funcs(('gelss',), (a1, b1))
if n > m:
# need to extend b matrix as it will be filled with
# a larger solution matrix
b2 = np.zeros((n, nrhs), dtype=gelss.dtype)
if len(b1.shape) == 2:
b2[:m,:] = b1
else:
b2[:m,0] = b1
b1 = b2
overwrite_a = overwrite_a or _datacopied(a1, a)
overwrite_b = overwrite_b or _datacopied(b1, b)
if gelss.module_name[:7] == 'flapack':
# get optimal work array
work = gelss(a1, b1, lwork=-1)[4]
lwork = work[0].real.astype(np.int)
v, x, s, rank, work, info = gelss(
a1, b1, cond=cond, lwork=lwork, overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
else:
raise NotImplementedError('calling gelss from %s' % gelss.module_name)
if info > 0:
raise LinAlgError("SVD did not converge in Linear Least Squares")
if info < 0:
raise ValueError('illegal value in %d-th argument of internal gelss'
% -info)
resids = np.asarray([], dtype=x.dtype)
if n < m:
x1 = x[:n]
if rank == n:
resids = np.sum(np.abs(x[n:])**2, axis=0)
x = x1
return x, resids, rank, s
def pinv(a, cond=None, rcond=None):
"""Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using a least-squares
solver.
Parameters
----------
a : array, shape (M, N)
Matrix to be pseudo-inverted
cond, rcond : float
Cutoff for 'small' singular values in the least-squares solver.
Singular values smaller than rcond*largest_singular_value are
considered zero.
Returns
-------
B : array, shape (N, M)
Raises LinAlgError if computation does not converge
Examples
--------
>>> from numpy import *
>>> a = random.randn(9, 6)
>>> B = linalg.pinv(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True
"""
a = np.asarray_chkfinite(a)
b = np.identity(a.shape[0], dtype=a.dtype)
if rcond is not None:
cond = rcond
return lstsq(a, b, cond=cond)[0]
def pinv2(a, cond=None, rcond=None):
"""Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its
singular-value decomposition and including all 'large' singular
values.
Parameters
----------
a : array, shape (M, N)
Matrix to be pseudo-inverted
cond, rcond : float or None
Cutoff for 'small' singular values.
Singular values smaller than rcond*largest_singular_value are
considered zero.
If None or -1, suitable machine precision is used.
Returns
-------
B : array, shape (N, M)
Raises LinAlgError if SVD computation does not converge
Examples
--------
>>> from numpy import *
>>> a = random.randn(9, 6)
>>> B = linalg.pinv2(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True
"""
a = np.asarray_chkfinite(a)
u, s, vh = decomp_svd.svd(a)
t = u.dtype.char
if rcond is not None:
cond = rcond
if cond in [None,-1]:
eps = np.finfo(np.float).eps
feps = np.finfo(np.single).eps
_array_precision = {'f': 0, 'd': 1, 'F': 0, 'D': 1}
cond = {0: feps*1e3, 1: eps*1e6}[_array_precision[t]]
m, n = a.shape
cutoff = cond*np.maximum.reduce(s)
psigma = np.zeros((m, n), t)
for i in range(len(s)):
if s[i] > cutoff:
psigma[i,i] = 1.0/np.conjugate(s[i])
#XXX: use lapack/blas routines for dot
return np.transpose(np.conjugate(np.dot(np.dot(u,psigma),vh)))
|