File: basic.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (548 lines) | stat: -rw-r--r-- 17,478 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
#
# Author: Pearu Peterson, March 2002
#
# w/ additions by Travis Oliphant, March 2002

__all__ = ['solve', 'solve_triangular', 'solveh_banded', 'solve_banded',
            'inv', 'det', 'lstsq', 'pinv', 'pinv2']

import numpy as np

from flinalg import get_flinalg_funcs
from lapack import get_lapack_funcs
from misc import LinAlgError, _datacopied
from scipy.linalg import calc_lwork
import decomp_svd


# Linear equations
def solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False,
          debug=False):
    """Solve the equation a x = b for x

    Parameters
    ----------
    a : array, shape (M, M)
    b : array, shape (M,) or (M, N)
    sym_pos : boolean
        Assume a is symmetric and positive definite
    lower : boolean
        Use only data contained in the lower triangle of a, if sym_pos is true.
        Default is to use upper triangle.
    overwrite_a : boolean
        Allow overwriting data in a (may enhance performance)
    overwrite_b : boolean
        Allow overwriting data in b (may enhance performance)

    Returns
    -------
    x : array, shape (M,) or (M, N) depending on b
        Solution to the system a x = b

    Raises LinAlgError if a is singular

    """
    a1, b1 = map(np.asarray_chkfinite,(a,b))
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError('expected square matrix')
    if a1.shape[0] != b1.shape[0]:
        raise ValueError('incompatible dimensions')
    overwrite_a = overwrite_a or _datacopied(a1, a)
    overwrite_b = overwrite_b or _datacopied(b1, b)
    if debug:
        print 'solve:overwrite_a=',overwrite_a
        print 'solve:overwrite_b=',overwrite_b
    if sym_pos:
        posv, = get_lapack_funcs(('posv',), (a1,b1))
        c, x, info = posv(a1, b1, lower=lower,
                        overwrite_a=overwrite_a,
                        overwrite_b=overwrite_b)
    else:
        gesv, = get_lapack_funcs(('gesv',), (a1,b1))
        lu, piv, x, info = gesv(a1, b1, overwrite_a=overwrite_a,
                                            overwrite_b=overwrite_b)

    if info == 0:
        return x
    if info > 0:
        raise LinAlgError("singular matrix")
    raise ValueError('illegal value in %d-th argument of internal gesv|posv'
                                                                    % -info)

def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False,
                     overwrite_b=False, debug=False):
    """Solve the equation `a x = b` for `x`, assuming a is a triangular matrix.

    Parameters
    ----------
    a : array, shape (M, M)
    b : array, shape (M,) or (M, N)
    lower : boolean
        Use only data contained in the lower triangle of a.
        Default is to use upper triangle.
    trans : {0, 1, 2, 'N', 'T', 'C'}
        Type of system to solve:

        ========  =========
        trans     system
        ========  =========
        0 or 'N'  a x   = b
        1 or 'T'  a^T x = b
        2 or 'C'  a^H x = b
        ========  =========

    unit_diagonal : boolean
        If True, diagonal elements of A are assumed to be 1 and
        will not be referenced.

    overwrite_b : boolean
        Allow overwriting data in b (may enhance performance)

    Returns
    -------
    x : array, shape (M,) or (M, N) depending on b
        Solution to the system a x = b

    Raises
    ------
    LinAlgError
        If a is singular

    Notes
    -----
    .. versionadded:: 0.9.0
    """

    a1, b1 = map(np.asarray_chkfinite,(a,b))
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError('expected square matrix')
    if a1.shape[0] != b1.shape[0]:
        raise ValueError('incompatible dimensions')
    overwrite_b = overwrite_b or _datacopied(b1, b)
    if debug:
        print 'solve:overwrite_b=',overwrite_b
    trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans)
    trtrs, = get_lapack_funcs(('trtrs',), (a1,b1))
    x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower,
                    trans=trans, unitdiag=unit_diagonal)

    if info == 0:
        return x
    if info > 0:
        raise LinAlgError("singular matrix: resolution failed at diagonal %s" % (info-1))
    raise ValueError('illegal value in %d-th argument of internal trtrs')

def solve_banded((l, u), ab, b, overwrite_ab=False, overwrite_b=False,
          debug=False):
    """
    Solve the equation a x = b for x, assuming a is banded matrix.

    The matrix a is stored in ab using the matrix diagonal ordered form::

        ab[u + i - j, j] == a[i,j]

    Example of ab (shape of a is (6,6), u=1, l=2)::

        *    a01  a12  a23  a34  a45
        a00  a11  a22  a33  a44  a55
        a10  a21  a32  a43  a54   *
        a20  a31  a42  a53   *    *

    Parameters
    ----------
    (l, u) : (integer, integer)
        Number of non-zero lower and upper diagonals
    ab : array, shape (l+u+1, M)
        Banded matrix
    b : array, shape (M,) or (M, K)
        Right-hand side
    overwrite_ab : boolean
        Discard data in ab (may enhance performance)
    overwrite_b : boolean
        Discard data in b (may enhance performance)

    Returns
    -------
    x : array, shape (M,) or (M, K)
        The solution to the system a x = b

    """
    a1, b1 = map(np.asarray_chkfinite, (ab, b))

    # Validate shapes.
    if a1.shape[-1] != b1.shape[0]:
        raise ValueError("shapes of ab and b are not compatible.")
    if l + u + 1 != a1.shape[0]:
        raise ValueError("invalid values for the number of lower and upper diagonals:"
                " l+u+1 (%d) does not equal ab.shape[0] (%d)" % (l+u+1, ab.shape[0]))

    overwrite_b = overwrite_b or _datacopied(b1, b)

    gbsv, = get_lapack_funcs(('gbsv',), (a1, b1))
    a2 = np.zeros((2*l+u+1, a1.shape[1]), dtype=gbsv.dtype)
    a2[l:,:] = a1
    lu, piv, x, info = gbsv(l, u, a2, b1, overwrite_ab=True,
                                                overwrite_b=overwrite_b)
    if info == 0:
        return x
    if info > 0:
        raise LinAlgError("singular matrix")
    raise ValueError('illegal value in %d-th argument of internal gbsv' % -info)

def solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False):
    """Solve equation a x = b. a is Hermitian positive-definite banded matrix.

    The matrix a is stored in ab either in lower diagonal or upper
    diagonal ordered form:

        ab[u + i - j, j] == a[i,j]        (if upper form; i <= j)
        ab[    i - j, j] == a[i,j]        (if lower form; i >= j)

    Example of ab (shape of a is (6,6), u=2)::

        upper form:
        *   *   a02 a13 a24 a35
        *   a01 a12 a23 a34 a45
        a00 a11 a22 a33 a44 a55

        lower form:
        a00 a11 a22 a33 a44 a55
        a10 a21 a32 a43 a54 *
        a20 a31 a42 a53 *   *

    Cells marked with * are not used.

    Parameters
    ----------
    ab : array, shape (u + 1, M)
        Banded matrix
    b : array, shape (M,) or (M, K)
        Right-hand side
    overwrite_ab : boolean
        Discard data in ab (may enhance performance)
    overwrite_b : boolean
        Discard data in b (may enhance performance)
    lower : boolean
        Is the matrix in the lower form. (Default is upper form)

    Returns
    -------
    x : array, shape (M,) or (M, K)
        The solution to the system a x = b

    """

    ab, b = map(np.asarray_chkfinite, (ab, b))

    # Validate shapes.
    if ab.shape[-1] != b.shape[0]:
        raise ValueError("shapes of ab and b are not compatible.")

    pbsv, = get_lapack_funcs(('pbsv',), (ab, b))
    c, x, info = pbsv(ab, b, lower=lower, overwrite_ab=overwrite_ab,
                                            overwrite_b=overwrite_b)
    if info > 0:
        raise LinAlgError("%d-th leading minor not positive definite" % info)
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal pbsv'
                                                                    % -info)
    return x


# matrix inversion
def inv(a, overwrite_a=False):
    """
    Compute the inverse of a matrix.

    Parameters
    ----------
    a : array_like
        Square matrix to be inverted.
    overwrite_a : bool, optional
        Discard data in `a` (may improve performance). Default is False.

    Returns
    -------
    ainv : ndarray
        Inverse of the matrix `a`.

    Raises
    ------
    LinAlgError :
        If `a` is singular.
    ValueError :
        If `a` is not square, or not 2-dimensional.

    Examples
    --------
    >>> a = np.array([[1., 2.], [3., 4.]])
    >>> sp.linalg.inv(a)
    array([[-2. ,  1. ],
           [ 1.5, -0.5]])
    >>> np.dot(a, sp.linalg.inv(a))
    array([[ 1.,  0.],
           [ 0.,  1.]])

    """
    a1 = np.asarray_chkfinite(a)
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError('expected square matrix')
    overwrite_a = overwrite_a or _datacopied(a1, a)
    #XXX: I found no advantage or disadvantage of using finv.
##     finv, = get_flinalg_funcs(('inv',),(a1,))
##     if finv is not None:
##         a_inv,info = finv(a1,overwrite_a=overwrite_a)
##         if info==0:
##             return a_inv
##         if info>0: raise LinAlgError, "singular matrix"
##         if info<0: raise ValueError,\
##            'illegal value in %d-th argument of internal inv.getrf|getri'%(-info)
    getrf, getri = get_lapack_funcs(('getrf','getri'), (a1,))
    #XXX: C ATLAS versions of getrf/i have rowmajor=1, this could be
    #     exploited for further optimization. But it will be probably
    #     a mess. So, a good testing site is required before trying
    #     to do that.
    if getrf.module_name[:7] == 'clapack' != getri.module_name[:7]:
        # ATLAS 3.2.1 has getrf but not getri.
        lu, piv, info = getrf(np.transpose(a1), rowmajor=0,
                                                overwrite_a=overwrite_a)
        lu = np.transpose(lu)
    else:
        lu, piv, info = getrf(a1, overwrite_a=overwrite_a)
    if info == 0:
        if getri.module_name[:7] == 'flapack':
            lwork = calc_lwork.getri(getri.prefix, a1.shape[0])
            lwork = lwork[1]
            # XXX: the following line fixes curious SEGFAULT when
            # benchmarking 500x500 matrix inverse. This seems to
            # be a bug in LAPACK ?getri routine because if lwork is
            # minimal (when using lwork[0] instead of lwork[1]) then
            # all tests pass. Further investigation is required if
            # more such SEGFAULTs occur.
            lwork = int(1.01 * lwork)
            inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1)
        else: # clapack
            inv_a, info = getri(lu, piv, overwrite_lu=1)
    if info > 0:
        raise LinAlgError("singular matrix")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal '
                                                    'getrf|getri' % -info)
    return inv_a


### Determinant

def det(a, overwrite_a=False):
    """Compute the determinant of a matrix

    Parameters
    ----------
    a : array, shape (M, M)

    Returns
    -------
    det : float or complex
        Determinant of a

    Notes
    -----
    The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
    """
    a1 = np.asarray_chkfinite(a)
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError('expected square matrix')
    overwrite_a = overwrite_a or _datacopied(a1, a)
    fdet, = get_flinalg_funcs(('det',), (a1,))
    a_det, info = fdet(a1, overwrite_a=overwrite_a)
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal '
                                                        'det.getrf' % -info)
    return a_det

### Linear Least Squares

def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False):
    """
    Compute least-squares solution to equation Ax = b.

    Compute a vector x such that the 2-norm ``|b - A x|`` is minimized.

    Parameters
    ----------
    a : array, shape (M, N)
        Left hand side matrix (2-D array).
    b : array, shape (M,) or (M, K)
        Right hand side matrix or vector (1-D or 2-D array).
    cond : float, optional
        Cutoff for 'small' singular values; used to determine effective
        rank of a. Singular values smaller than
        ``rcond * largest_singular_value`` are considered zero.
    overwrite_a : bool, optional
        Discard data in `a` (may enhance performance). Default is False.
    overwrite_b : bool, optional
        Discard data in `b` (may enhance performance). Default is False.

    Returns
    -------
    x : array, shape (N,) or (N, K) depending on shape of b
        Least-squares solution.
    residues : ndarray, shape () or (1,) or (K,)
        Sums of residues, squared 2-norm for each column in ``b - a x``.
        If rank of matrix a is < N or > M this is an empty array.
        If b was 1-D, this is an (1,) shape array, otherwise the shape is (K,).
    rank : int
        Effective rank of matrix `a`.
    s : array, shape (min(M,N),)
        Singular values of `a`. The condition number of a is
        ``abs(s[0]/s[-1])``.

    Raises
    ------
    LinAlgError :
        If computation does not converge.


    See Also
    --------
    optimize.nnls : linear least squares with non-negativity constraint

    """
    a1, b1 = map(np.asarray_chkfinite, (a, b))
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m, n = a1.shape
    if len(b1.shape) == 2:
        nrhs = b1.shape[1]
    else:
        nrhs = 1
    if m != b1.shape[0]:
        raise ValueError('incompatible dimensions')
    gelss, = get_lapack_funcs(('gelss',), (a1, b1))
    if n > m:
        # need to extend b matrix as it will be filled with
        # a larger solution matrix
        b2 = np.zeros((n, nrhs), dtype=gelss.dtype)
        if len(b1.shape) == 2:
            b2[:m,:] = b1
        else:
            b2[:m,0] = b1
        b1 = b2
    overwrite_a = overwrite_a or _datacopied(a1, a)
    overwrite_b = overwrite_b or _datacopied(b1, b)
    if gelss.module_name[:7] == 'flapack':
        # get optimal work array
        work = gelss(a1, b1, lwork=-1)[4]
        lwork = work[0].real.astype(np.int)
        v, x, s, rank, work, info = gelss(
            a1, b1, cond=cond, lwork=lwork, overwrite_a=overwrite_a,
            overwrite_b=overwrite_b)

    else:
        raise NotImplementedError('calling gelss from %s' % gelss.module_name)
    if info > 0:
        raise LinAlgError("SVD did not converge in Linear Least Squares")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gelss'
                                                                    % -info)
    resids = np.asarray([], dtype=x.dtype)
    if n < m:
        x1 = x[:n]
        if rank == n:
            resids = np.sum(np.abs(x[n:])**2, axis=0)
        x = x1
    return x, resids, rank, s


def pinv(a, cond=None, rcond=None):
    """Compute the (Moore-Penrose) pseudo-inverse of a matrix.

    Calculate a generalized inverse of a matrix using a least-squares
    solver.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to be pseudo-inverted
    cond, rcond : float
        Cutoff for 'small' singular values in the least-squares solver.
        Singular values smaller than rcond*largest_singular_value are
        considered zero.

    Returns
    -------
    B : array, shape (N, M)

    Raises LinAlgError if computation does not converge

    Examples
    --------
    >>> from numpy import *
    >>> a = random.randn(9, 6)
    >>> B = linalg.pinv(a)
    >>> allclose(a, dot(a, dot(B, a)))
    True
    >>> allclose(B, dot(B, dot(a, B)))
    True

    """
    a = np.asarray_chkfinite(a)
    b = np.identity(a.shape[0], dtype=a.dtype)
    if rcond is not None:
        cond = rcond
    return lstsq(a, b, cond=cond)[0]


def pinv2(a, cond=None, rcond=None):
    """Compute the (Moore-Penrose) pseudo-inverse of a matrix.

    Calculate a generalized inverse of a matrix using its
    singular-value decomposition and including all 'large' singular
    values.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to be pseudo-inverted
    cond, rcond : float or None
        Cutoff for 'small' singular values.
        Singular values smaller than rcond*largest_singular_value are
        considered zero.

        If None or -1, suitable machine precision is used.

    Returns
    -------
    B : array, shape (N, M)

    Raises LinAlgError if SVD computation does not converge

    Examples
    --------
    >>> from numpy import *
    >>> a = random.randn(9, 6)
    >>> B = linalg.pinv2(a)
    >>> allclose(a, dot(a, dot(B, a)))
    True
    >>> allclose(B, dot(B, dot(a, B)))
    True

    """
    a = np.asarray_chkfinite(a)
    u, s, vh = decomp_svd.svd(a)
    t = u.dtype.char
    if rcond is not None:
        cond = rcond
    if cond in [None,-1]:
        eps = np.finfo(np.float).eps
        feps = np.finfo(np.single).eps
        _array_precision = {'f': 0, 'd': 1, 'F': 0, 'D': 1}
        cond = {0: feps*1e3, 1: eps*1e6}[_array_precision[t]]
    m, n = a.shape
    cutoff = cond*np.maximum.reduce(s)
    psigma = np.zeros((m, n), t)
    for i in range(len(s)):
        if s[i] > cutoff:
            psigma[i,i] = 1.0/np.conjugate(s[i])
    #XXX: use lapack/blas routines for dot
    return np.transpose(np.conjugate(np.dot(np.dot(u,psigma),vh)))