File: decomp_qr.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (331 lines) | stat: -rw-r--r-- 11,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""QR decomposition functions."""

import numpy
from numpy import asarray_chkfinite

# Local imports
import special_matrices
from blas import get_blas_funcs
from lapack import get_lapack_funcs, find_best_lapack_type
from misc import _datacopied

# XXX: what is qr_old, should it be kept?
__all__ = ['qr', 'rq', 'qr_old']


def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False):
    """Compute QR decomposition of a matrix.

    Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to be decomposed
    overwrite_a : bool, optional
        Whether data in a is overwritten (may improve performance)
    lwork : int, optional
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic'}
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes).
    pivoting : bool, optional
        Whether or not factorization should include pivoting for rank-revealing
        qr decomposition. If pivoting, compute the decomposition
        :lm:`A P = Q R` as above, but where P is chosen such that the diagonal
        of R is non-increasing.

    Returns
    -------
    Q : double or complex ndarray
        Of shape (M, M), or (M, K) for ``mode='economic'``.  Not returned if
        ``mode='r'``.
    R : double or complex ndarray
        Of shape (M, N), or (K, N) for ``mode='economic'``.  ``K = min(M, N)``.
    P : integer ndarray
        Of shape (N,) for ``pivoting=True``. Not returned if ``pivoting=False``.

    Raises
    ------
    LinAlgError
        Raised if decomposition fails

    Notes
    -----
    This is an interface to the LAPACK routines dgeqrf, zgeqrf,
    dorgqr, zungqr, dgeqp3, and zgeqp3.

    If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
    of (M,M) and (M,N), with ``K=min(M,N)``.

    Examples
    --------
    >>> from scipy import random, linalg, dot, diag, all, allclose
    >>> a = random.randn(9, 6)

    >>> q, r = linalg.qr(a)
    >>> allclose(a, dot(q, r))
    True
    >>> q.shape, r.shape
    ((9, 9), (9, 6))

    >>> r2 = linalg.qr(a, mode='r')
    >>> allclose(r, r2)
    True

    >>> q3, r3 = linalg.qr(a, mode='economic')
    >>> q3.shape, r3.shape
    ((9, 6), (6, 6))

    >>> q4, r4, p4 = linalg.qr(a, pivoting=True)
    >>> d = abs(diag(r4))
    >>> all(d[1:] <= d[:-1])
    True
    >>> allclose(a[:, p4], dot(q4, r4))
    True
    >>> q4.shape, r4.shape, p4.shape
    ((9, 9), (9, 6), (6,))

    >>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
    >>> q5.shape, r5.shape, p5.shape
    ((9, 6), (6, 6), (6,))

    """
    if mode == 'qr':
        # 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
        # 'qr' are used below, but set to 'full' anyway to be sure
        mode = 'full'
    if not mode in ['full', 'qr', 'r', 'economic']:
        raise ValueError(\
                 "Mode argument should be one of ['full', 'r', 'economic']")

    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError("expected 2D array")
    M, N = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))

    if pivoting:
        geqp3, = get_lapack_funcs(('geqp3',), (a1,))
        if lwork is None or lwork == -1:
            # get optimal work array
            qr, jpvt, tau, work, info = geqp3(a1, lwork=-1, overwrite_a=1)
            lwork = work[0].real.astype(numpy.int)

        qr, jpvt, tau, work, info = geqp3(a1, lwork=lwork,
            overwrite_a=overwrite_a)
        jpvt -= 1 # geqp3 returns a 1-based index array, so subtract 1
        if info < 0:
            raise ValueError("illegal value in %d-th argument of internal geqp3"
                                                                        % -info)
    else:
        geqrf, = get_lapack_funcs(('geqrf',), (a1,))
        if lwork is None or lwork == -1:
            # get optimal work array
            qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1)
            lwork = work[0].real.astype(numpy.int)

        qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a)
        if info < 0:
            raise ValueError("illegal value in %d-th argument of internal geqrf"
                                                                        % -info)
    if not mode == 'economic' or M < N:
        R = special_matrices.triu(qr)
    else:
        R = special_matrices.triu(qr[0:N, 0:N])

    if mode == 'r':
        if pivoting:
            return R, jpvt
        else:
            return R

    if find_best_lapack_type((a1,))[0] in ('s', 'd'):
        gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))
    else:
        gor_un_gqr, = get_lapack_funcs(('ungqr',), (qr,))

    if M < N:
        # get optimal work array
        Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=-1, overwrite_a=1)
        lwork = work[0].real.astype(numpy.int)
        Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=lwork, overwrite_a=1)
    elif mode == 'economic':
        # get optimal work array
        Q, work, info = gor_un_gqr(qr, tau, lwork=-1, overwrite_a=1)
        lwork = work[0].real.astype(numpy.int)
        Q, work, info = gor_un_gqr(qr, tau, lwork=lwork, overwrite_a=1)
    else:
        t = qr.dtype.char
        qqr = numpy.empty((M, M), dtype=t)
        qqr[:,0:N] = qr
        # get optimal work array
        Q, work, info = gor_un_gqr(qqr, tau, lwork=-1, overwrite_a=1)
        lwork = work[0].real.astype(numpy.int)
        Q, work, info = gor_un_gqr(qqr, tau, lwork=lwork, overwrite_a=1)

    if info < 0:
        raise ValueError("illegal value in %d-th argument of internal gorgqr"
                                                                    % -info)
    if pivoting:
        return Q, R, jpvt
    return Q, R



def qr_old(a, overwrite_a=False, lwork=None):
    """Compute QR decomposition of a matrix.

    Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to be decomposed
    overwrite_a : boolean
        Whether data in a is overwritten (may improve performance)
    lwork : integer
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.

    Returns
    -------
    Q : double or complex array, shape (M, M)
    R : double or complex array, shape (M, N)
        Size K = min(M, N)

    Raises LinAlgError if decomposition fails

    """
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    M,N = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    geqrf, = get_lapack_funcs(('geqrf',), (a1,))
    if lwork is None or lwork == -1:
        # get optimal work array
        qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1)
        lwork = work[0]
    qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a)
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal geqrf'
                                                                    % -info)
    gemm, = get_blas_funcs(('gemm',), (qr,))
    t = qr.dtype.char
    R = special_matrices.triu(qr)
    Q = numpy.identity(M, dtype=t)
    ident = numpy.identity(M, dtype=t)
    zeros = numpy.zeros
    for i in range(min(M, N)):
        v = zeros((M,), t)
        v[i] = 1
        v[i+1:M] = qr[i+1:M, i]
        H = gemm(-tau[i], v, v, 1+0j, ident, trans_b=2)
        Q = gemm(1, Q, H)
    return Q, R


def rq(a, overwrite_a=False, lwork=None, mode='full'):
    """Compute RQ decomposition of a square real matrix.

    Calculate the decomposition :lm:`A = R Q` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : array, shape (M, M)
        Matrix to be decomposed
    overwrite_a : boolean
        Whether data in a is overwritten (may improve performance)
    lwork : integer
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic'}
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes).

    Returns
    -------
    R : double array, shape (M, N)
    Q : double or complex array, shape (M, M)

    Raises LinAlgError if decomposition fails

    Examples
    --------
    >>> from scipy import linalg
    >>> from numpy import random, dot, allclose
    >>> a = random.randn(6, 9)
    >>> r, q = linalg.rq(a)
    >>> allclose(a, dot(r, q))
    True
    >>> r.shape, q.shape
    ((6, 9), (9, 9))
    >>> r2 = linalg.rq(a, mode='r')
    >>> allclose(r, r2)
    True
    >>> r3, q3 = linalg.rq(a, mode='economic')
    >>> r3.shape, q3.shape
    ((6, 6), (6, 9))

    """
    if not mode in ['full', 'r', 'economic']:
        raise ValueError(\
                 "Mode argument should be one of ['full', 'r', 'economic']")

    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    M, N = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))

    gerqf, = get_lapack_funcs(('gerqf',), (a1,))
    if lwork is None or lwork == -1:
        # get optimal work array
        rq, tau, work, info = gerqf(a1, lwork=-1, overwrite_a=1)
        lwork = work[0].real.astype(numpy.int)
    rq, tau, work, info = gerqf(a1, lwork=lwork, overwrite_a=overwrite_a)
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gerqf'
                                                                    % -info)
    if not mode == 'economic' or N < M:
        R = special_matrices.triu(rq, N-M)
    else:
        R = special_matrices.triu(rq[-M:, -M:])

    if mode == 'r':
        return R

    if find_best_lapack_type((a1,))[0] in ('s', 'd'):
        gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,))
    else:
        gor_un_grq, = get_lapack_funcs(('ungrq',), (rq,))

    if N < M:
        # get optimal work array
        Q, work, info = gor_un_grq(rq[-N:], tau, lwork=-1, overwrite_a=1)
        lwork = work[0].real.astype(numpy.int)
        Q, work, info = gor_un_grq(rq[-N:], tau, lwork=lwork, overwrite_a=1)
    elif mode == 'economic':
        # get optimal work array
        Q, work, info = gor_un_grq(rq, tau, lwork=-1, overwrite_a=1)
        lwork = work[0].real.astype(numpy.int)
        Q, work, info = gor_un_grq(rq, tau, lwork=lwork, overwrite_a=1)
    else:
        rq1 = numpy.empty((N, N), dtype=rq.dtype)
        rq1[-M:] = rq
        # get optimal work array
        Q, work, info = gor_un_grq(rq1, tau, lwork=-1, overwrite_a=1)
        lwork = work[0].real.astype(numpy.int)
        Q, work, info = gor_un_grq(rq1, tau, lwork=lwork, overwrite_a=1)

    if info < 0:
        raise ValueError("illegal value in %d-th argument of internal orgrq"
                                                                    % -info)
    return R, Q