1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
"""QR decomposition functions."""
import numpy
from numpy import asarray_chkfinite
# Local imports
import special_matrices
from blas import get_blas_funcs
from lapack import get_lapack_funcs, find_best_lapack_type
from misc import _datacopied
# XXX: what is qr_old, should it be kept?
__all__ = ['qr', 'rq', 'qr_old']
def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False):
"""Compute QR decomposition of a matrix.
Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : array, shape (M, N)
Matrix to be decomposed
overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)
lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
mode : {'full', 'r', 'economic'}
Determines what information is to be returned: either both Q and R
('full', default), only R ('r') or both Q and R but computed in
economy-size ('economic', see Notes).
pivoting : bool, optional
Whether or not factorization should include pivoting for rank-revealing
qr decomposition. If pivoting, compute the decomposition
:lm:`A P = Q R` as above, but where P is chosen such that the diagonal
of R is non-increasing.
Returns
-------
Q : double or complex ndarray
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned if
``mode='r'``.
R : double or complex ndarray
Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
P : integer ndarray
Of shape (N,) for ``pivoting=True``. Not returned if ``pivoting=False``.
Raises
------
LinAlgError
Raised if decomposition fails
Notes
-----
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
dorgqr, zungqr, dgeqp3, and zgeqp3.
If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
of (M,M) and (M,N), with ``K=min(M,N)``.
Examples
--------
>>> from scipy import random, linalg, dot, diag, all, allclose
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
True
>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))
>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
>>> d = abs(diag(r4))
>>> all(d[1:] <= d[:-1])
True
>>> allclose(a[:, p4], dot(q4, r4))
True
>>> q4.shape, r4.shape, p4.shape
((9, 9), (9, 6), (6,))
>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
>>> q5.shape, r5.shape, p5.shape
((9, 6), (6, 6), (6,))
"""
if mode == 'qr':
# 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
# 'qr' are used below, but set to 'full' anyway to be sure
mode = 'full'
if not mode in ['full', 'qr', 'r', 'economic']:
raise ValueError(\
"Mode argument should be one of ['full', 'r', 'economic']")
a1 = asarray_chkfinite(a)
if len(a1.shape) != 2:
raise ValueError("expected 2D array")
M, N = a1.shape
overwrite_a = overwrite_a or (_datacopied(a1, a))
if pivoting:
geqp3, = get_lapack_funcs(('geqp3',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
qr, jpvt, tau, work, info = geqp3(a1, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
qr, jpvt, tau, work, info = geqp3(a1, lwork=lwork,
overwrite_a=overwrite_a)
jpvt -= 1 # geqp3 returns a 1-based index array, so subtract 1
if info < 0:
raise ValueError("illegal value in %d-th argument of internal geqp3"
% -info)
else:
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a)
if info < 0:
raise ValueError("illegal value in %d-th argument of internal geqrf"
% -info)
if not mode == 'economic' or M < N:
R = special_matrices.triu(qr)
else:
R = special_matrices.triu(qr[0:N, 0:N])
if mode == 'r':
if pivoting:
return R, jpvt
else:
return R
if find_best_lapack_type((a1,))[0] in ('s', 'd'):
gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))
else:
gor_un_gqr, = get_lapack_funcs(('ungqr',), (qr,))
if M < N:
# get optimal work array
Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=lwork, overwrite_a=1)
elif mode == 'economic':
# get optimal work array
Q, work, info = gor_un_gqr(qr, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qr, tau, lwork=lwork, overwrite_a=1)
else:
t = qr.dtype.char
qqr = numpy.empty((M, M), dtype=t)
qqr[:,0:N] = qr
# get optimal work array
Q, work, info = gor_un_gqr(qqr, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qqr, tau, lwork=lwork, overwrite_a=1)
if info < 0:
raise ValueError("illegal value in %d-th argument of internal gorgqr"
% -info)
if pivoting:
return Q, R, jpvt
return Q, R
def qr_old(a, overwrite_a=False, lwork=None):
"""Compute QR decomposition of a matrix.
Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : array, shape (M, N)
Matrix to be decomposed
overwrite_a : boolean
Whether data in a is overwritten (may improve performance)
lwork : integer
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
Returns
-------
Q : double or complex array, shape (M, M)
R : double or complex array, shape (M, N)
Size K = min(M, N)
Raises LinAlgError if decomposition fails
"""
a1 = asarray_chkfinite(a)
if len(a1.shape) != 2:
raise ValueError('expected matrix')
M,N = a1.shape
overwrite_a = overwrite_a or (_datacopied(a1, a))
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1)
lwork = work[0]
qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal geqrf'
% -info)
gemm, = get_blas_funcs(('gemm',), (qr,))
t = qr.dtype.char
R = special_matrices.triu(qr)
Q = numpy.identity(M, dtype=t)
ident = numpy.identity(M, dtype=t)
zeros = numpy.zeros
for i in range(min(M, N)):
v = zeros((M,), t)
v[i] = 1
v[i+1:M] = qr[i+1:M, i]
H = gemm(-tau[i], v, v, 1+0j, ident, trans_b=2)
Q = gemm(1, Q, H)
return Q, R
def rq(a, overwrite_a=False, lwork=None, mode='full'):
"""Compute RQ decomposition of a square real matrix.
Calculate the decomposition :lm:`A = R Q` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : array, shape (M, M)
Matrix to be decomposed
overwrite_a : boolean
Whether data in a is overwritten (may improve performance)
lwork : integer
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
mode : {'full', 'r', 'economic'}
Determines what information is to be returned: either both Q and R
('full', default), only R ('r') or both Q and R but computed in
economy-size ('economic', see Notes).
Returns
-------
R : double array, shape (M, N)
Q : double or complex array, shape (M, M)
Raises LinAlgError if decomposition fails
Examples
--------
>>> from scipy import linalg
>>> from numpy import random, dot, allclose
>>> a = random.randn(6, 9)
>>> r, q = linalg.rq(a)
>>> allclose(a, dot(r, q))
True
>>> r.shape, q.shape
((6, 9), (9, 9))
>>> r2 = linalg.rq(a, mode='r')
>>> allclose(r, r2)
True
>>> r3, q3 = linalg.rq(a, mode='economic')
>>> r3.shape, q3.shape
((6, 6), (6, 9))
"""
if not mode in ['full', 'r', 'economic']:
raise ValueError(\
"Mode argument should be one of ['full', 'r', 'economic']")
a1 = asarray_chkfinite(a)
if len(a1.shape) != 2:
raise ValueError('expected matrix')
M, N = a1.shape
overwrite_a = overwrite_a or (_datacopied(a1, a))
gerqf, = get_lapack_funcs(('gerqf',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
rq, tau, work, info = gerqf(a1, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
rq, tau, work, info = gerqf(a1, lwork=lwork, overwrite_a=overwrite_a)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal gerqf'
% -info)
if not mode == 'economic' or N < M:
R = special_matrices.triu(rq, N-M)
else:
R = special_matrices.triu(rq[-M:, -M:])
if mode == 'r':
return R
if find_best_lapack_type((a1,))[0] in ('s', 'd'):
gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,))
else:
gor_un_grq, = get_lapack_funcs(('ungrq',), (rq,))
if N < M:
# get optimal work array
Q, work, info = gor_un_grq(rq[-N:], tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_grq(rq[-N:], tau, lwork=lwork, overwrite_a=1)
elif mode == 'economic':
# get optimal work array
Q, work, info = gor_un_grq(rq, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_grq(rq, tau, lwork=lwork, overwrite_a=1)
else:
rq1 = numpy.empty((N, N), dtype=rq.dtype)
rq1[-M:] = rq
# get optimal work array
Q, work, info = gor_un_grq(rq1, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_grq(rq1, tau, lwork=lwork, overwrite_a=1)
if info < 0:
raise ValueError("illegal value in %d-th argument of internal orgrq"
% -info)
return R, Q
|