File: decomp_svd.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (171 lines) | stat: -rw-r--r-- 4,881 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""SVD decomposition functions."""

import numpy
from numpy import asarray_chkfinite, zeros, r_, diag
from scipy.linalg import calc_lwork

# Local imports.
from misc import LinAlgError, _datacopied
from lapack import get_lapack_funcs

__all__ = ['svd', 'svdvals', 'diagsvd', 'orth']


def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False):
    """Singular Value Decomposition.

    Factorizes the matrix a into two unitary matrices U and Vh and
    an 1d-array s of singular values (real, non-negative) such that
    a == U S Vh  if S is an suitably shaped matrix of zeros whose
    main diagonal is s.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to decompose
    full_matrices : boolean
        If true,  U, Vh are shaped  (M,M), (N,N)
        If false, the shapes are    (M,K), (K,N) where K = min(M,N)
    compute_uv : boolean
        Whether to compute also U, Vh in addition to s (Default: true)
    overwrite_a : boolean
        Whether data in a is overwritten (may improve performance)

    Returns
    -------
    U:  array, shape (M,M) or (M,K) depending on full_matrices
    s:  array, shape (K,)
        The singular values, sorted so that s[i] >= s[i+1]. K = min(M, N)
    Vh: array, shape (N,N) or (K,N) depending on full_matrices

    For compute_uv = False, only s is returned.

    Raises LinAlgError if SVD computation does not converge

    Examples
    --------
    >>> from scipy import random, linalg, allclose, dot
    >>> a = random.randn(9, 6) + 1j*random.randn(9, 6)
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape, Vh.shape, s.shape
    ((9, 9), (6, 6), (6,))

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, Vh.shape, s.shape
    ((9, 6), (6, 6), (6,))
    >>> S = linalg.diagsvd(s, 6, 6)
    >>> allclose(a, dot(U, dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> allclose(s, s2)
    True

    See also
    --------
    svdvals : return singular values of a matrix
    diagsvd : return the Sigma matrix, given the vector s

    """
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m,n = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gesdd, = get_lapack_funcs(('gesdd',), (a1,))
    if gesdd.module_name[:7] == 'flapack':
        lwork = calc_lwork.gesdd(gesdd.prefix, m, n, compute_uv)[1]
        u,s,v,info = gesdd(a1,compute_uv = compute_uv, lwork = lwork,
                           full_matrices=full_matrices, overwrite_a = overwrite_a)
    else: # 'clapack'
        raise NotImplementedError('calling gesdd from %s' % gesdd.module_name)
    if info > 0:
        raise LinAlgError("SVD did not converge")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gesdd'
                                                                    % -info)
    if compute_uv:
        return u, s, v
    else:
        return s

def svdvals(a, overwrite_a=False):
    """Compute singular values of a matrix.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to decompose
    overwrite_a : boolean
        Whether data in a is overwritten (may improve performance)

    Returns
    -------
    s:  array, shape (K,)
        The singular values, sorted so that s[i] >= s[i+1]. K = min(M, N)

    Raises LinAlgError if SVD computation does not converge

    See also
    --------
    svd : return the full singular value decomposition of a matrix
    diagsvd : return the Sigma matrix, given the vector s

    """
    return svd(a, compute_uv=0, overwrite_a=overwrite_a)

def diagsvd(s, M, N):
    """Construct the sigma matrix in SVD from singular values and size M,N.

    Parameters
    ----------
    s : array, shape (M,) or (N,)
        Singular values
    M : integer
    N : integer
        Size of the matrix whose singular values are s

    Returns
    -------
    S : array, shape (M, N)
        The S-matrix in the singular value decomposition

    """
    part = diag(s)
    typ = part.dtype.char
    MorN = len(s)
    if MorN == M:
        return r_['-1', part, zeros((M, N-M), typ)]
    elif MorN == N:
        return r_[part, zeros((M-N,N), typ)]
    else:
        raise ValueError("Length of s must be M or N.")


# Orthonormal decomposition

def orth(A):
    """Construct an orthonormal basis for the range of A using SVD

    Parameters
    ----------
    A : array, shape (M, N)

    Returns
    -------
    Q : array, shape (M, K)
        Orthonormal basis for the range of A.
        K = effective rank of A, as determined by automatic cutoff

    See also
    --------
    svd : Singular value decomposition of a matrix

    """
    u, s, vh = svd(A)
    M, N = A.shape
    eps = numpy.finfo(float).eps
    tol = max(M,N) * numpy.amax(s) * eps
    num = numpy.sum(s > tol, dtype=int)
    Q = u[:,:num]
    return Q