File: fblas_l2.pyf.src

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (142 lines) | stat: -rw-r--r-- 5,260 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
! -*- f90 -*-
! Signatures for f2py-wrappers of FORTRAN LEVEL 2 BLAS functions.
!
! Author: Pearu Peterson
! Created: Jan-Feb 2002
! Modified: Fabian Pedregosa, 2011
!
! Implemented:
!   gemv, hemv, symv, trmv, ger, geru, gerc
!
! Not implemented:
!   gbmv, hbmv, hpmv, sbmv, spmv, tbmv, tpmv, trsv, tbsv, tpsv,
!   her, hpr, her2, hpr2, syr, spr, syr2, spr2
!

subroutine <prefix>gemv(m,n,alpha,a,x,beta,y,offx,incx,offy,incy,trans,rows,cols,ly)
  ! Computes a matrix-vector product using a general matrix
  !
  ! y = gemv(alpha,a,x,beta=0,y=0,offx=0,incx=1,offy=0,incy=0,trans=0)
  ! Calculate y <- alpha * op(A) * x + beta * y

  callstatement (*f2py_func)((trans?(trans==2?"C":"T"):"N"),&m,&n,&alpha,a,&m, &
       x+offx,&incx,&beta,y+offy,&incy)
  callprotoargument char*,int*,int*,<ctype>*,<ctype>*,int*,<ctype>*,int*,<ctype>*, &
       <ctype>*,int*

  integer optional, intent(in), check(trans>=0 && trans <=2) :: trans = 0
  integer optional, intent(in), check(incx>0||incx<0) :: incx = 1
  integer optional, intent(in), check(incy>0||incy<0) :: incy = 1
  <ftype> intent(in) :: alpha
  <ftype> intent(in), optional :: beta = <0.0,\0,(0.0\,0.0),\2>

  <ftype> dimension(*), intent(in) :: x
  <ftype> dimension(ly), intent(in,copy,out), depend(ly),optional :: y
  integer intent(hide), depend(incy,rows,offy) :: ly = &
       (y_capi==Py_None?1+offy+(rows-1)*abs(incy):-1)
  <ftype> dimension(m,n), intent(in) :: a
  integer depend(a), intent(hide):: m = shape(a,0)
  integer depend(a), intent(hide):: n = shape(a,1)

  integer optional, intent(in) :: offx=0
  integer optional, intent(in) :: offy=0
  check(offx>=0 && offx<len(x)) :: x
  check(len(x)>offx+(cols-1)*abs(incx)) :: x
  depend(offx,cols,incx) :: x

  check(offy>=0 && offy<len(y)) :: y
  check(len(y)>offy+(rows-1)*abs(incy)) :: y
  depend(offy,rows,incy) :: y

  integer depend(m,n,trans), intent(hide) :: rows = (trans?n:m)
  integer depend(m,n,trans), intent(hide) :: cols = (trans?m:n)

end subroutine <prefix>gemv


subroutine <prefix><symv,\0,hemv,\2>(n,alpha,a,x,beta,y,offx,incx,offy,incy,lower,ly)
  ! Computes a matrix-vector product for a symmetric/hermitian matrix
  !
  ! Calculate y <- alpha * A * x + beta * y, A is symmmetric/hermitian

  callstatement (*f2py_func)((lower?"L":"U"),&n,&alpha,a,&n,x+offx,&incx,&beta, &
       y+offy,&incy)
  callprotoargument char*,int*,<ctype>*,<ctype>*,int*,<ctype>*,int*,<ctype>*, &
       <ctype>*,int*

  integer optional, intent(in),check(lower==0||lower==1) :: lower = 0
  integer optional, intent(in),check(incx>0||incx<0) :: incx = 1
  integer optional, intent(in),check(incy>0||incy<0) :: incy = 1
  <ftype> intent(in) :: alpha
  <ftype> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2>

  <ftype> dimension(*), intent(in) :: x
  <ftype> dimension(ly), intent(in,copy,out),depend(ly),optional :: y
  integer intent(hide),depend(incy,n,offy) :: ly = &
       (y_capi==Py_None?1+offy+(n-1)*abs(incy):-1)
  <ftype> dimension(n,n), intent(in),check(shape(a,0)==shape(a,1)) :: a
  integer depend(a), intent(hide):: n = shape(a,0)

  integer optional, intent(in) :: offx=0
  integer optional, intent(in) :: offy=0
  check(offx>=0 && offx<len(x)) :: x
  check(len(x)>offx+(n-1)*abs(incx)) :: x
  depend(offx,n,incx) :: x

  check(offy>=0 && offy<len(y)) :: y
  check(len(y)>offy+(n-1)*abs(incy)) :: y
  depend(offy,n,incy) :: y

end subroutine  <prefix><symv,\0,hemv,\2>


subroutine <prefix>trmv(n,a,x,offx,incx,lower,trans,unitdiag)
  ! Computes a matrix-vector product using a triangular matrix
  !
  ! x <- op(A) * x, A is triangular
  !

  callstatement (*f2py_func)((lower?"L":"U"), (trans?(trans==2?"C":"T"):"N"), &
       (unitdiag?"U":"N"),&n,a,&n,x+offx,&incx)
  callprotoargument char*,char*,char*,int*,<ctype>*,int*,<ctype>*,int*

  integer optional, intent(in), check(trans>=0 && trans <=2) :: trans = 0
  integer optional, intent(in), check(lower==0||lower==1) :: lower = 0
  integer optional, intent(in), check(unitdiag==0||unitdiag==1) :: unitdiag = 0
  integer optional, intent(in), check(incx>0||incx<0) :: incx = 1

  <ftype> dimension(*), intent(in,out,copy) :: x
  <ftype> dimension(n,n), intent(in),check(shape(a,0)==shape(a,1)) :: a
  integer depend(a), intent(hide):: n = shape(a,0)

  integer optional, intent(in), depend(x) :: offx=0
  check(offx>=0 && offx<len(x)) :: offx

  check(len(x)>offx+(n-1)*abs(incx)) :: n
  depend(x,offx,incx) :: n

end subroutine <prefix>trmv


! <ftype6=real,double precision,complex,double complex,\2,\3>
! <prefix6=s,d,c,z,c,z>
subroutine <prefix6>ger<,,u,u,c,c>(m,n,alpha,x,incx,y,incy,a,lda)
  ! Performs a rank-1 update of a general matrix.
  !
  ! Calculate a <- alpha*x*y^T + a
  ! Calculate a <- alpha*x*y^H + a
  !

  integer intent(hide),depend(x) :: m = len(x)
  integer intent(hide),depend(y) :: n = len(y)

  <ftype6> intent(in) :: alpha
  <ftype6> dimension(m), intent(in,overwrite) :: x
  integer optional, intent(in),check(incx==1||incx==-1) :: incx = 1
  <ftype6> dimension(n), intent(in,overwrite) :: y
  integer optional, intent(in),check(incy==1||incy==-1) :: incy = 1
  <ftype6> dimension(m,n), intent(in,out,copy),optional :: &
       a = <0.0,\0,(0.0\,0.0),\2,\2,\2>
  integer intent(hide), depend(m) :: lda=m

end subroutine <prefix6>ger<,,u,u,c,c>