File: special_matrices.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (676 lines) | stat: -rw-r--r-- 18,755 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

import math
import numpy as np
from scipy.misc import comb

__all__ = ['tri', 'tril', 'triu', 'toeplitz', 'circulant', 'hankel',
           'hadamard', 'leslie', 'all_mat', 'kron', 'block_diag', 'companion',
           'hilbert', 'invhilbert']


#-----------------------------------------------------------------------------
# matrix construction functions
#-----------------------------------------------------------------------------

#
# *Note*: tri{,u,l} is implemented in numpy, but an important bug was fixed in
# 2.0.0.dev-1af2f3, the following tri{,u,l} definitions are here for backwards
# compatibility.

def tri(N, M=None, k=0, dtype=None):
    """
    Construct (N, M) matrix filled with ones at and below the k-th diagonal.

    The matrix has A[i,j] == 1 for i <= j + k

    Parameters
    ----------
    N : integer
        The size of the first dimension of the matrix.
    M : integer or None
        The size of the second dimension of the matrix. If `M` is None,
        `M = N` is assumed.
    k : integer
        Number of subdiagonal below which matrix is filled with ones.
        `k` = 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0
        superdiagonal.
    dtype : dtype
        Data type of the matrix.

    Returns
    -------
    A : array, shape (N, M)

    Examples
    --------
    >>> from scipy.linalg import tri
    >>> tri(3, 5, 2, dtype=int)
    array([[1, 1, 1, 0, 0],
           [1, 1, 1, 1, 0],
           [1, 1, 1, 1, 1]])
    >>> tri(3, 5, -1, dtype=int)
    array([[0, 0, 0, 0, 0],
           [1, 0, 0, 0, 0],
           [1, 1, 0, 0, 0]])

    """
    if M is None: M = N
    if type(M) == type('d'):
        #pearu: any objections to remove this feature?
        #       As tri(N,'d') is equivalent to tri(N,dtype='d')
        dtype = M
        M = N
    m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k)
    if dtype is None:
        return m
    else:
        return m.astype(dtype)

def tril(m, k=0):
    """Construct a copy of a matrix with elements above the k-th diagonal zeroed.

    Parameters
    ----------
    m : array
        Matrix whose elements to return
    k : integer
        Diagonal above which to zero elements.
        k == 0 is the main diagonal, k < 0 subdiagonal and k > 0 superdiagonal.

    Returns
    -------
    A : array, shape m.shape, dtype m.dtype

    Examples
    --------
    >>> from scipy.linalg import tril
    >>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 0,  0,  0],
           [ 4,  0,  0],
           [ 7,  8,  0],
           [10, 11, 12]])

    """
    m = np.asarray(m)
    out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char)*m
    return out

def triu(m, k=0):
    """Construct a copy of a matrix with elements below the k-th diagonal zeroed.

    Parameters
    ----------
    m : array
        Matrix whose elements to return
    k : integer
        Diagonal below which to zero elements.
        k == 0 is the main diagonal, k < 0 subdiagonal and k > 0 superdiagonal.

    Returns
    -------
    A : array, shape m.shape, dtype m.dtype

    Examples
    --------
    >>> from scipy.linalg import tril
    >>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 1,  2,  3],
           [ 4,  5,  6],
           [ 0,  8,  9],
           [ 0,  0, 12]])

    """
    m = np.asarray(m)
    out = (1-tri(m.shape[0], m.shape[1], k-1, m.dtype.char))*m
    return out


def toeplitz(c, r=None):
    """
    Construct a Toeplitz matrix.

    The Toeplitz matrix has constant diagonals, with c as its first column
    and r as its first row.  If r is not given, ``r == conjugate(c)`` is
    assumed.

    Parameters
    ----------
    c : array_like
        First column of the matrix.  Whatever the actual shape of `c`, it
        will be converted to a 1-D array.
    r : array_like
        First row of the matrix. If None, ``r = conjugate(c)`` is assumed;
        in this case, if c[0] is real, the result is a Hermitian matrix.
        r[0] is ignored; the first row of the returned matrix is
        ``[c[0], r[1:]]``.  Whatever the actual shape of `r`, it will be
        converted to a 1-D array.

    Returns
    -------
    A : array, shape (len(c), len(r))
        The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.

    See also
    --------
    circulant : circulant matrix
    hankel : Hankel matrix

    Notes
    -----
    The behavior when `c` or `r` is a scalar, or when `c` is complex and
    `r` is None, was changed in version 0.8.0.  The behavior in previous
    versions was undocumented and is no longer supported.

    Examples
    --------
    >>> from scipy.linalg import toeplitz
    >>> toeplitz([1,2,3], [1,4,5,6])
    array([[1, 4, 5, 6],
           [2, 1, 4, 5],
           [3, 2, 1, 4]])
    >>> toeplitz([1.0, 2+3j, 4-1j])
    array([[ 1.+0.j,  2.-3.j,  4.+1.j],
           [ 2.+3.j,  1.+0.j,  2.-3.j],
           [ 4.-1.j,  2.+3.j,  1.+0.j]])

    """
    c = np.asarray(c).ravel()
    if r is None:
        r = c.conjugate()
    else:
        r = np.asarray(r).ravel()
    # Form a 1D array of values to be used in the matrix, containing a reversed
    # copy of r[1:], followed by c.
    vals = np.concatenate((r[-1:0:-1], c))
    a, b = np.ogrid[0:len(c), len(r)-1:-1:-1]
    indx = a + b
    # `indx` is a 2D array of indices into the 1D array `vals`, arranged so that
    # `vals[indx]` is the Toeplitz matrix.
    return vals[indx]

def circulant(c):
    """
    Construct a circulant matrix.

    Parameters
    ----------
    c : array_like
        1-D array, the first column of the matrix.

    Returns
    -------
    A : array, shape (len(c), len(c))
        A circulant matrix whose first column is `c`.

    See also
    --------
    toeplitz : Toeplitz matrix
    hankel : Hankel matrix

    Notes
    -----
    .. versionadded:: 0.8.0

    Examples
    --------
    >>> from scipy.linalg import circulant
    >>> circulant([1, 2, 3])
    array([[1, 3, 2],
           [2, 1, 3],
           [3, 2, 1]])

    """
    c = np.asarray(c).ravel()
    a, b = np.ogrid[0:len(c), 0:-len(c):-1]
    indx = a + b
    # `indx` is a 2D array of indices into `c`, arranged so that `c[indx]` is
    # the circulant matrix.
    return c[indx]

def hankel(c, r=None):
    """
    Construct a Hankel matrix.

    The Hankel matrix has constant anti-diagonals, with `c` as its
    first column and `r` as its last row.  If `r` is not given, then
    `r = zeros_like(c)` is assumed.

    Parameters
    ----------
    c : array_like
        First column of the matrix.  Whatever the actual shape of `c`, it
        will be converted to a 1-D array.
    r : array_like, 1D
        Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed.
        r[0] is ignored; the last row of the returned matrix is
        ``[c[-1], r[1:]]``.  Whatever the actual shape of `r`, it will be
        converted to a 1-D array.

    Returns
    -------
    A : array, shape (len(c), len(r))
        The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.

    See also
    --------
    toeplitz : Toeplitz matrix
    circulant : circulant matrix

    Examples
    --------
    >>> from scipy.linalg import hankel
    >>> hankel([1, 17, 99])
    array([[ 1, 17, 99],
           [17, 99,  0],
           [99,  0,  0]])
    >>> hankel([1,2,3,4], [4,7,7,8,9])
    array([[1, 2, 3, 4, 7],
           [2, 3, 4, 7, 7],
           [3, 4, 7, 7, 8],
           [4, 7, 7, 8, 9]])

    """
    c = np.asarray(c).ravel()
    if r is None:
        r = np.zeros_like(c)
    else:
        r = np.asarray(r).ravel()
    # Form a 1D array of values to be used in the matrix, containing `c`
    # followed by r[1:].
    vals = np.concatenate((c, r[1:]))
    a, b = np.ogrid[0:len(c), 0:len(r)]
    indx = a + b
    # `indx` is a 2D array of indices into the 1D array `vals`, arranged so that
    # `vals[indx]` is the Hankel matrix.
    return vals[indx]

def hadamard(n, dtype=int):
    """
    Construct a Hadamard matrix.

    `hadamard(n)` constructs an n-by-n Hadamard matrix, using Sylvester's
    construction.  `n` must be a power of 2.

    Parameters
    ----------
    n : int
        The order of the matrix.  `n` must be a power of 2.
    dtype : numpy dtype
        The data type of the array to be constructed.

    Returns
    -------
    H : ndarray with shape (n, n)
        The Hadamard matrix.

    Notes
    -----
    .. versionadded:: 0.8.0

    Examples
    --------
    >>> hadamard(2, dtype=complex)
    array([[ 1.+0.j,  1.+0.j],
           [ 1.+0.j, -1.-0.j]])
    >>> hadamard(4)
    array([[ 1,  1,  1,  1],
           [ 1, -1,  1, -1],
           [ 1,  1, -1, -1],
           [ 1, -1, -1,  1]])

    """

    # This function is a slightly modified version of the
    # function contributed by Ivo in ticket #675.

    if n < 1:
        lg2 = 0
    else:
        lg2 = int(math.log(n, 2))
    if 2 ** lg2 != n:
        raise ValueError("n must be an positive integer, and n must be power of 2")

    H = np.array([[1]], dtype=dtype)

    # Sylvester's construction
    for i in range(0, lg2):
        H = np.vstack((np.hstack((H, H)), np.hstack((H, -H))))

    return H


def leslie(f, s):
    """
    Create a Leslie matrix.

    Given the length n array of fecundity coefficients `f` and the length
    n-1 array of survival coefficents `s`, return the associated Leslie matrix.

    Parameters
    ----------
    f : array_like
        The "fecundity" coefficients, has to be 1-D.
    s : array_like
        The "survival" coefficients, has to be 1-D.  The length of `s`
        must be one less than the length of `f`, and it must be at least 1.

    Returns
    -------
    L : ndarray
        Returns a 2-D ndarray of shape ``(n, n)``, where `n` is the
        length of `f`.  The array is zero except for the first row,
        which is `f`, and the first sub-diagonal, which is `s`.
        The data-type of the array will be the data-type of ``f[0]+s[0]``.

    Notes
    -----
    .. versionadded:: 0.8.0

    The Leslie matrix is used to model discrete-time, age-structured
    population growth [1]_ [2]_. In a population with `n` age classes, two sets
    of parameters define a Leslie matrix: the `n` "fecundity coefficients",
    which give the number of offspring per-capita produced by each age
    class, and the `n` - 1 "survival coefficients", which give the
    per-capita survival rate of each age class.

    References
    ----------
    .. [1] P. H. Leslie, On the use of matrices in certain population
           mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945)
    .. [2] P. H. Leslie, Some further notes on the use of matrices in
           population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245
           (Dec. 1948)

    Examples
    --------
    >>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
    array([[ 0.1,  2. ,  1. ,  0.1],
           [ 0.2,  0. ,  0. ,  0. ],
           [ 0. ,  0.8,  0. ,  0. ],
           [ 0. ,  0. ,  0.7,  0. ]])

    """
    f = np.atleast_1d(f)
    s = np.atleast_1d(s)
    if f.ndim != 1:
        raise ValueError("Incorrect shape for f.  f must be one-dimensional")
    if s.ndim != 1:
        raise ValueError("Incorrect shape for s.  s must be one-dimensional")
    if f.size != s.size + 1:
        raise ValueError("Incorrect lengths for f and s.  The length"
                         " of s must be one less than the length of f.")
    if s.size == 0:
        raise ValueError("The length of s must be at least 1.")

    tmp = f[0] + s[0]
    n = f.size
    a = np.zeros((n,n), dtype=tmp.dtype)
    a[0] = f
    a[range(1,n), range(0,n-1)] = s
    return a


def all_mat(*args):
    return map(np.matrix,args)

def kron(a,b):
    """Kronecker product of a and b.

    The result is the block matrix::

        a[0,0]*b    a[0,1]*b  ... a[0,-1]*b
        a[1,0]*b    a[1,1]*b  ... a[1,-1]*b
        ...
        a[-1,0]*b   a[-1,1]*b ... a[-1,-1]*b

    Parameters
    ----------
    a : array, shape (M, N)
    b : array, shape (P, Q)

    Returns
    -------
    A : array, shape (M*P, N*Q)
        Kronecker product of a and b

    Examples
    --------
    >>> from scipy import kron, array
    >>> kron(array([[1,2],[3,4]]), array([[1,1,1]]))
    array([[1, 1, 1, 2, 2, 2],
           [3, 3, 3, 4, 4, 4]])

    """
    if not a.flags['CONTIGUOUS']:
        a = np.reshape(a, a.shape)
    if not b.flags['CONTIGUOUS']:
        b = np.reshape(b, b.shape)
    o = np.outer(a,b)
    o = o.reshape(a.shape + b.shape)
    return np.concatenate(np.concatenate(o, axis=1), axis=1)

def block_diag(*arrs):
    """
    Create a block diagonal matrix from provided arrays.

    Given the inputs `A`, `B` and `C`, the output will have these
    arrays arranged on the diagonal::

        [[A, 0, 0],
         [0, B, 0],
         [0, 0, C]]

    Parameters
    ----------
    A, B, C, ... : array_like, up to 2-D
        Input arrays.  A 1-D array or array_like sequence of length `n`is
        treated as a 2-D array with shape ``(1,n)``.

    Returns
    -------
    D : ndarray
        Array with `A`, `B`, `C`, ... on the diagonal.  `D` has the
        same dtype as `A`.

    Notes
    -----
    If all the input arrays are square, the output is known as a
    block diagonal matrix.

    Examples
    --------
    >>> A = [[1, 0],
    ...      [0, 1]]
    >>> B = [[3, 4, 5],
    ...      [6, 7, 8]]
    >>> C = [[7]]
    >>> block_diag(A, B, C)
    [[1 0 0 0 0 0]
     [0 1 0 0 0 0]
     [0 0 3 4 5 0]
     [0 0 6 7 8 0]
     [0 0 0 0 0 7]]
    >>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
    array([[ 1.,  0.,  0.,  0.,  0.],
           [ 0.,  2.,  3.,  0.,  0.],
           [ 0.,  0.,  0.,  4.,  5.],
           [ 0.,  0.,  0.,  6.,  7.]])

    """
    if arrs == ():
        arrs = ([],)
    arrs = [np.atleast_2d(a) for a in arrs]

    bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2]
    if bad_args:
        raise ValueError("arguments in the following positions have dimension "
                            "greater than 2: %s" % bad_args)

    shapes = np.array([a.shape for a in arrs])
    out = np.zeros(np.sum(shapes, axis=0), dtype=arrs[0].dtype)

    r, c = 0, 0
    for i, (rr, cc) in enumerate(shapes):
        out[r:r + rr, c:c + cc] = arrs[i]
        r += rr
        c += cc
    return out

def companion(a):
    """
    Create a companion matrix.

    Create the companion matrix [1]_ associated with the polynomial whose
    coefficients are given in `a`.

    Parameters
    ----------
    a : array_like
        1-D array of polynomial coefficients.  The length of `a` must be
        at least two, and ``a[0]`` must not be zero.

    Returns
    -------
    c : ndarray
        A square array of shape ``(n-1, n-1)``, where `n` is the length
        of `a`.  The first row of `c` is ``-a[1:]/a[0]``, and the first
        sub-diagonal is all ones.  The data-type of the array is the same
        as the data-type of ``1.0*a[0]``.

    Raises
    ------
    ValueError
        If any of the following are true: a) ``a.ndim != 1``;
        b) ``a.size < 2``; c) ``a[0] == 0``.

    Notes
    -----
    .. versionadded:: 0.8.0

    References
    ----------
    .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*.  Cambridge, UK:
        Cambridge University Press, 1999, pp. 146-7.

    Examples
    --------
    >>> from scipy.linalg import companion
    >>> companion([1, -10, 31, -30])
    array([[ 10., -31.,  30.],
           [  1.,   0.,   0.],
           [  0.,   1.,   0.]])

    """
    a = np.atleast_1d(a)

    if a.ndim != 1:
        raise ValueError("Incorrect shape for `a`.  `a` must be one-dimensional.")

    if a.size < 2:
        raise ValueError("The length of `a` must be at least 2.")

    if a[0] == 0:
        raise ValueError("The first coefficient in `a` must not be zero.")

    first_row = -a[1:]/(1.0*a[0])
    n = a.size
    c = np.zeros((n-1, n-1), dtype=first_row.dtype)
    c[0] = first_row
    c[range(1,n-1), range(0, n-2)] = 1
    return c


def hilbert(n):
    """Create a Hilbert matrix of order n.

    Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`.

    Parameters
    ----------
    n : int
        The size of the array to create.

    Returns
    -------
    h : ndarray with shape (n, n)
        The Hilber matrix.

    Notes
    -----
    .. versionadded:: 0.10.0

    Examples
    --------
    >>> hilbert(3)
    array([[ 1.        ,  0.5       ,  0.33333333],
           [ 0.5       ,  0.33333333,  0.25      ],
           [ 0.33333333,  0.25      ,  0.2       ]])

    """
    values = 1.0 / (1.0 + np.arange(2 * n - 1))
    h = hankel(values[:n], r=values[n-1:])
    return h


def invhilbert(n, exact=False):
    """Compute the inverse of the Hilbert matrix of order `n`.

    Parameters
    ----------
    n : int
        The order of the Hilbert matrix.
    exact : bool
        If False, the data type of the array that is returned in np.float64,
        and the array is an approximation of the inverse.
        If True, the array is exact integer array.  To represent the exact
        inverse when n > 14, the returned array is an object array of long
        integers.  For n <= 14, the exact inverse is returned as an array
        with data type np.int64.

    Returns
    -------
    invh : ndarray with shape (n, n)
        The data type of the array is np.float64 is exact is False.
        If exact is True, the data type is either np.int64 (for n <= 14)
        or object (for n > 14).  In the latter case, the objects in the
        array will be long integers.

    Notes
    -----
    .. versionadded:: 0.10.0

    Examples
    --------
    >>> invhilbert(4)
    array([[   16.,  -120.,   240.,  -140.],
           [ -120.,  1200., -2700.,  1680.],
           [  240., -2700.,  6480., -4200.],
           [ -140.,  1680., -4200.,  2800.]])
    >>> invhilbert(4, exact=True)
    array([[   16,  -120,   240,  -140],
           [ -120,  1200, -2700,  1680],
           [  240, -2700,  6480, -4200],
           [ -140,  1680, -4200,  2800]], dtype=int64)
    >>> invhilbert(16)[7,7]
    4.2475099528537506e+19
    >>> invhilbert(16, exact=True)[7,7]
    42475099528537378560L
    """
    if exact:
        if n > 14:
            dtype = object
        else:
            dtype = np.int64
    else:
        dtype = np.float64
    invh = np.empty((n, n), dtype=dtype)
    for i in xrange(n):
        for j in xrange(0, i + 1):
            s = i + j
            invh[i, j] = ((-1)**s * (s + 1) *
                          comb(n + i, n - j - 1, exact) *
                          comb(n + j, n - i - 1, exact) *
                          comb(s, i, exact) ** 2)
            if i != j:
                invh[j, i] = invh[i, j]
    return invh