1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
import math
import numpy as np
from scipy.misc import comb
__all__ = ['tri', 'tril', 'triu', 'toeplitz', 'circulant', 'hankel',
'hadamard', 'leslie', 'all_mat', 'kron', 'block_diag', 'companion',
'hilbert', 'invhilbert']
#-----------------------------------------------------------------------------
# matrix construction functions
#-----------------------------------------------------------------------------
#
# *Note*: tri{,u,l} is implemented in numpy, but an important bug was fixed in
# 2.0.0.dev-1af2f3, the following tri{,u,l} definitions are here for backwards
# compatibility.
def tri(N, M=None, k=0, dtype=None):
"""
Construct (N, M) matrix filled with ones at and below the k-th diagonal.
The matrix has A[i,j] == 1 for i <= j + k
Parameters
----------
N : integer
The size of the first dimension of the matrix.
M : integer or None
The size of the second dimension of the matrix. If `M` is None,
`M = N` is assumed.
k : integer
Number of subdiagonal below which matrix is filled with ones.
`k` = 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0
superdiagonal.
dtype : dtype
Data type of the matrix.
Returns
-------
A : array, shape (N, M)
Examples
--------
>>> from scipy.linalg import tri
>>> tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])
>>> tri(3, 5, -1, dtype=int)
array([[0, 0, 0, 0, 0],
[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0]])
"""
if M is None: M = N
if type(M) == type('d'):
#pearu: any objections to remove this feature?
# As tri(N,'d') is equivalent to tri(N,dtype='d')
dtype = M
M = N
m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k)
if dtype is None:
return m
else:
return m.astype(dtype)
def tril(m, k=0):
"""Construct a copy of a matrix with elements above the k-th diagonal zeroed.
Parameters
----------
m : array
Matrix whose elements to return
k : integer
Diagonal above which to zero elements.
k == 0 is the main diagonal, k < 0 subdiagonal and k > 0 superdiagonal.
Returns
-------
A : array, shape m.shape, dtype m.dtype
Examples
--------
>>> from scipy.linalg import tril
>>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],
[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])
"""
m = np.asarray(m)
out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char)*m
return out
def triu(m, k=0):
"""Construct a copy of a matrix with elements below the k-th diagonal zeroed.
Parameters
----------
m : array
Matrix whose elements to return
k : integer
Diagonal below which to zero elements.
k == 0 is the main diagonal, k < 0 subdiagonal and k > 0 superdiagonal.
Returns
-------
A : array, shape m.shape, dtype m.dtype
Examples
--------
>>> from scipy.linalg import tril
>>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
m = np.asarray(m)
out = (1-tri(m.shape[0], m.shape[1], k-1, m.dtype.char))*m
return out
def toeplitz(c, r=None):
"""
Construct a Toeplitz matrix.
The Toeplitz matrix has constant diagonals, with c as its first column
and r as its first row. If r is not given, ``r == conjugate(c)`` is
assumed.
Parameters
----------
c : array_like
First column of the matrix. Whatever the actual shape of `c`, it
will be converted to a 1-D array.
r : array_like
First row of the matrix. If None, ``r = conjugate(c)`` is assumed;
in this case, if c[0] is real, the result is a Hermitian matrix.
r[0] is ignored; the first row of the returned matrix is
``[c[0], r[1:]]``. Whatever the actual shape of `r`, it will be
converted to a 1-D array.
Returns
-------
A : array, shape (len(c), len(r))
The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.
See also
--------
circulant : circulant matrix
hankel : Hankel matrix
Notes
-----
The behavior when `c` or `r` is a scalar, or when `c` is complex and
`r` is None, was changed in version 0.8.0. The behavior in previous
versions was undocumented and is no longer supported.
Examples
--------
>>> from scipy.linalg import toeplitz
>>> toeplitz([1,2,3], [1,4,5,6])
array([[1, 4, 5, 6],
[2, 1, 4, 5],
[3, 2, 1, 4]])
>>> toeplitz([1.0, 2+3j, 4-1j])
array([[ 1.+0.j, 2.-3.j, 4.+1.j],
[ 2.+3.j, 1.+0.j, 2.-3.j],
[ 4.-1.j, 2.+3.j, 1.+0.j]])
"""
c = np.asarray(c).ravel()
if r is None:
r = c.conjugate()
else:
r = np.asarray(r).ravel()
# Form a 1D array of values to be used in the matrix, containing a reversed
# copy of r[1:], followed by c.
vals = np.concatenate((r[-1:0:-1], c))
a, b = np.ogrid[0:len(c), len(r)-1:-1:-1]
indx = a + b
# `indx` is a 2D array of indices into the 1D array `vals`, arranged so that
# `vals[indx]` is the Toeplitz matrix.
return vals[indx]
def circulant(c):
"""
Construct a circulant matrix.
Parameters
----------
c : array_like
1-D array, the first column of the matrix.
Returns
-------
A : array, shape (len(c), len(c))
A circulant matrix whose first column is `c`.
See also
--------
toeplitz : Toeplitz matrix
hankel : Hankel matrix
Notes
-----
.. versionadded:: 0.8.0
Examples
--------
>>> from scipy.linalg import circulant
>>> circulant([1, 2, 3])
array([[1, 3, 2],
[2, 1, 3],
[3, 2, 1]])
"""
c = np.asarray(c).ravel()
a, b = np.ogrid[0:len(c), 0:-len(c):-1]
indx = a + b
# `indx` is a 2D array of indices into `c`, arranged so that `c[indx]` is
# the circulant matrix.
return c[indx]
def hankel(c, r=None):
"""
Construct a Hankel matrix.
The Hankel matrix has constant anti-diagonals, with `c` as its
first column and `r` as its last row. If `r` is not given, then
`r = zeros_like(c)` is assumed.
Parameters
----------
c : array_like
First column of the matrix. Whatever the actual shape of `c`, it
will be converted to a 1-D array.
r : array_like, 1D
Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed.
r[0] is ignored; the last row of the returned matrix is
``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be
converted to a 1-D array.
Returns
-------
A : array, shape (len(c), len(r))
The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.
See also
--------
toeplitz : Toeplitz matrix
circulant : circulant matrix
Examples
--------
>>> from scipy.linalg import hankel
>>> hankel([1, 17, 99])
array([[ 1, 17, 99],
[17, 99, 0],
[99, 0, 0]])
>>> hankel([1,2,3,4], [4,7,7,8,9])
array([[1, 2, 3, 4, 7],
[2, 3, 4, 7, 7],
[3, 4, 7, 7, 8],
[4, 7, 7, 8, 9]])
"""
c = np.asarray(c).ravel()
if r is None:
r = np.zeros_like(c)
else:
r = np.asarray(r).ravel()
# Form a 1D array of values to be used in the matrix, containing `c`
# followed by r[1:].
vals = np.concatenate((c, r[1:]))
a, b = np.ogrid[0:len(c), 0:len(r)]
indx = a + b
# `indx` is a 2D array of indices into the 1D array `vals`, arranged so that
# `vals[indx]` is the Hankel matrix.
return vals[indx]
def hadamard(n, dtype=int):
"""
Construct a Hadamard matrix.
`hadamard(n)` constructs an n-by-n Hadamard matrix, using Sylvester's
construction. `n` must be a power of 2.
Parameters
----------
n : int
The order of the matrix. `n` must be a power of 2.
dtype : numpy dtype
The data type of the array to be constructed.
Returns
-------
H : ndarray with shape (n, n)
The Hadamard matrix.
Notes
-----
.. versionadded:: 0.8.0
Examples
--------
>>> hadamard(2, dtype=complex)
array([[ 1.+0.j, 1.+0.j],
[ 1.+0.j, -1.-0.j]])
>>> hadamard(4)
array([[ 1, 1, 1, 1],
[ 1, -1, 1, -1],
[ 1, 1, -1, -1],
[ 1, -1, -1, 1]])
"""
# This function is a slightly modified version of the
# function contributed by Ivo in ticket #675.
if n < 1:
lg2 = 0
else:
lg2 = int(math.log(n, 2))
if 2 ** lg2 != n:
raise ValueError("n must be an positive integer, and n must be power of 2")
H = np.array([[1]], dtype=dtype)
# Sylvester's construction
for i in range(0, lg2):
H = np.vstack((np.hstack((H, H)), np.hstack((H, -H))))
return H
def leslie(f, s):
"""
Create a Leslie matrix.
Given the length n array of fecundity coefficients `f` and the length
n-1 array of survival coefficents `s`, return the associated Leslie matrix.
Parameters
----------
f : array_like
The "fecundity" coefficients, has to be 1-D.
s : array_like
The "survival" coefficients, has to be 1-D. The length of `s`
must be one less than the length of `f`, and it must be at least 1.
Returns
-------
L : ndarray
Returns a 2-D ndarray of shape ``(n, n)``, where `n` is the
length of `f`. The array is zero except for the first row,
which is `f`, and the first sub-diagonal, which is `s`.
The data-type of the array will be the data-type of ``f[0]+s[0]``.
Notes
-----
.. versionadded:: 0.8.0
The Leslie matrix is used to model discrete-time, age-structured
population growth [1]_ [2]_. In a population with `n` age classes, two sets
of parameters define a Leslie matrix: the `n` "fecundity coefficients",
which give the number of offspring per-capita produced by each age
class, and the `n` - 1 "survival coefficients", which give the
per-capita survival rate of each age class.
References
----------
.. [1] P. H. Leslie, On the use of matrices in certain population
mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945)
.. [2] P. H. Leslie, Some further notes on the use of matrices in
population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245
(Dec. 1948)
Examples
--------
>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
array([[ 0.1, 2. , 1. , 0.1],
[ 0.2, 0. , 0. , 0. ],
[ 0. , 0.8, 0. , 0. ],
[ 0. , 0. , 0.7, 0. ]])
"""
f = np.atleast_1d(f)
s = np.atleast_1d(s)
if f.ndim != 1:
raise ValueError("Incorrect shape for f. f must be one-dimensional")
if s.ndim != 1:
raise ValueError("Incorrect shape for s. s must be one-dimensional")
if f.size != s.size + 1:
raise ValueError("Incorrect lengths for f and s. The length"
" of s must be one less than the length of f.")
if s.size == 0:
raise ValueError("The length of s must be at least 1.")
tmp = f[0] + s[0]
n = f.size
a = np.zeros((n,n), dtype=tmp.dtype)
a[0] = f
a[range(1,n), range(0,n-1)] = s
return a
def all_mat(*args):
return map(np.matrix,args)
def kron(a,b):
"""Kronecker product of a and b.
The result is the block matrix::
a[0,0]*b a[0,1]*b ... a[0,-1]*b
a[1,0]*b a[1,1]*b ... a[1,-1]*b
...
a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b
Parameters
----------
a : array, shape (M, N)
b : array, shape (P, Q)
Returns
-------
A : array, shape (M*P, N*Q)
Kronecker product of a and b
Examples
--------
>>> from scipy import kron, array
>>> kron(array([[1,2],[3,4]]), array([[1,1,1]]))
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
"""
if not a.flags['CONTIGUOUS']:
a = np.reshape(a, a.shape)
if not b.flags['CONTIGUOUS']:
b = np.reshape(b, b.shape)
o = np.outer(a,b)
o = o.reshape(a.shape + b.shape)
return np.concatenate(np.concatenate(o, axis=1), axis=1)
def block_diag(*arrs):
"""
Create a block diagonal matrix from provided arrays.
Given the inputs `A`, `B` and `C`, the output will have these
arrays arranged on the diagonal::
[[A, 0, 0],
[0, B, 0],
[0, 0, C]]
Parameters
----------
A, B, C, ... : array_like, up to 2-D
Input arrays. A 1-D array or array_like sequence of length `n`is
treated as a 2-D array with shape ``(1,n)``.
Returns
-------
D : ndarray
Array with `A`, `B`, `C`, ... on the diagonal. `D` has the
same dtype as `A`.
Notes
-----
If all the input arrays are square, the output is known as a
block diagonal matrix.
Examples
--------
>>> A = [[1, 0],
... [0, 1]]
>>> B = [[3, 4, 5],
... [6, 7, 8]]
>>> C = [[7]]
>>> block_diag(A, B, C)
[[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 3 4 5 0]
[0 0 6 7 8 0]
[0 0 0 0 0 7]]
>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
array([[ 1., 0., 0., 0., 0.],
[ 0., 2., 3., 0., 0.],
[ 0., 0., 0., 4., 5.],
[ 0., 0., 0., 6., 7.]])
"""
if arrs == ():
arrs = ([],)
arrs = [np.atleast_2d(a) for a in arrs]
bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2]
if bad_args:
raise ValueError("arguments in the following positions have dimension "
"greater than 2: %s" % bad_args)
shapes = np.array([a.shape for a in arrs])
out = np.zeros(np.sum(shapes, axis=0), dtype=arrs[0].dtype)
r, c = 0, 0
for i, (rr, cc) in enumerate(shapes):
out[r:r + rr, c:c + cc] = arrs[i]
r += rr
c += cc
return out
def companion(a):
"""
Create a companion matrix.
Create the companion matrix [1]_ associated with the polynomial whose
coefficients are given in `a`.
Parameters
----------
a : array_like
1-D array of polynomial coefficients. The length of `a` must be
at least two, and ``a[0]`` must not be zero.
Returns
-------
c : ndarray
A square array of shape ``(n-1, n-1)``, where `n` is the length
of `a`. The first row of `c` is ``-a[1:]/a[0]``, and the first
sub-diagonal is all ones. The data-type of the array is the same
as the data-type of ``1.0*a[0]``.
Raises
------
ValueError
If any of the following are true: a) ``a.ndim != 1``;
b) ``a.size < 2``; c) ``a[0] == 0``.
Notes
-----
.. versionadded:: 0.8.0
References
----------
.. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK:
Cambridge University Press, 1999, pp. 146-7.
Examples
--------
>>> from scipy.linalg import companion
>>> companion([1, -10, 31, -30])
array([[ 10., -31., 30.],
[ 1., 0., 0.],
[ 0., 1., 0.]])
"""
a = np.atleast_1d(a)
if a.ndim != 1:
raise ValueError("Incorrect shape for `a`. `a` must be one-dimensional.")
if a.size < 2:
raise ValueError("The length of `a` must be at least 2.")
if a[0] == 0:
raise ValueError("The first coefficient in `a` must not be zero.")
first_row = -a[1:]/(1.0*a[0])
n = a.size
c = np.zeros((n-1, n-1), dtype=first_row.dtype)
c[0] = first_row
c[range(1,n-1), range(0, n-2)] = 1
return c
def hilbert(n):
"""Create a Hilbert matrix of order n.
Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`.
Parameters
----------
n : int
The size of the array to create.
Returns
-------
h : ndarray with shape (n, n)
The Hilber matrix.
Notes
-----
.. versionadded:: 0.10.0
Examples
--------
>>> hilbert(3)
array([[ 1. , 0.5 , 0.33333333],
[ 0.5 , 0.33333333, 0.25 ],
[ 0.33333333, 0.25 , 0.2 ]])
"""
values = 1.0 / (1.0 + np.arange(2 * n - 1))
h = hankel(values[:n], r=values[n-1:])
return h
def invhilbert(n, exact=False):
"""Compute the inverse of the Hilbert matrix of order `n`.
Parameters
----------
n : int
The order of the Hilbert matrix.
exact : bool
If False, the data type of the array that is returned in np.float64,
and the array is an approximation of the inverse.
If True, the array is exact integer array. To represent the exact
inverse when n > 14, the returned array is an object array of long
integers. For n <= 14, the exact inverse is returned as an array
with data type np.int64.
Returns
-------
invh : ndarray with shape (n, n)
The data type of the array is np.float64 is exact is False.
If exact is True, the data type is either np.int64 (for n <= 14)
or object (for n > 14). In the latter case, the objects in the
array will be long integers.
Notes
-----
.. versionadded:: 0.10.0
Examples
--------
>>> invhilbert(4)
array([[ 16., -120., 240., -140.],
[ -120., 1200., -2700., 1680.],
[ 240., -2700., 6480., -4200.],
[ -140., 1680., -4200., 2800.]])
>>> invhilbert(4, exact=True)
array([[ 16, -120, 240, -140],
[ -120, 1200, -2700, 1680],
[ 240, -2700, 6480, -4200],
[ -140, 1680, -4200, 2800]], dtype=int64)
>>> invhilbert(16)[7,7]
4.2475099528537506e+19
>>> invhilbert(16, exact=True)[7,7]
42475099528537378560L
"""
if exact:
if n > 14:
dtype = object
else:
dtype = np.int64
else:
dtype = np.float64
invh = np.empty((n, n), dtype=dtype)
for i in xrange(n):
for j in xrange(0, i + 1):
s = i + j
invh[i, j] = ((-1)**s * (s + 1) *
comb(n + i, n - j - 1, exact) *
comb(n + j, n - i - 1, exact) *
comb(s, i, exact) ** 2)
if i != j:
invh[j, i] = invh[i, j]
return invh
|