1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
"""
Utility routines for the maximum entropy module.
Most of them are either Python replacements for the corresponding Fortran
routines or wrappers around matrices to allow the maxent module to
manipulate ndarrays, scipy sparse matrices, and PySparse matrices a
common interface.
Perhaps the logsumexp() function belongs under the utils/ branch where other
modules can access it more easily.
Copyright: Ed Schofield, 2003-2006
License: BSD-style (see LICENSE.txt in main source directory)
"""
# Future imports must come before any code in 2.5
from __future__ import division
__author__ = "Ed Schofield"
__version__ = '2.0'
import random
import math
import cmath
import numpy
from numpy import log, exp, asarray, ndarray, empty
from scipy import sparse
from scipy.misc import logsumexp
def _logsumexpcomplex(values):
"""A version of logsumexp that should work if the values passed are
complex-numbered, such as the output of robustarraylog(). So we
expect:
cmath.exp(logsumexpcomplex(robustarraylog(values))) ~= sum(values,axis=0)
except for a small rounding error in both real and imag components.
The output is complex. (To recover just the real component, use
A.real, where A is the complex return value.)
"""
if len(values) == 0:
return 0.0
iterator = iter(values)
# Get the first element
while True:
# Loop until we have a value greater than -inf
try:
b_i = iterator.next() + 0j
except StopIteration:
# empty
return float('-inf')
if b_i.real != float('-inf'):
break
# Now the rest
for a_i in iterator:
a_i += 0j
if b_i.real > a_i.real:
increment = robustlog(1.+cmath.exp(a_i - b_i))
# print "Increment is " + str(increment)
b_i = b_i + increment
else:
increment = robustlog(1.+cmath.exp(b_i - a_i))
# print "Increment is " + str(increment)
b_i = a_i + increment
return b_i
def logsumexp_naive(values):
"""For testing logsumexp(). Subject to numerical overflow for large
values (e.g. 720).
"""
s = 0.0
for x in values:
s += math.exp(x)
return math.log(s)
def robustlog(x):
"""Returns log(x) if x > 0, the complex log cmath.log(x) if x < 0,
or float('-inf') if x == 0.
"""
if x == 0.:
return float('-inf')
elif type(x) is complex or (type(x) is float and x < 0):
return cmath.log(x)
else:
return math.log(x)
def _robustarraylog(x):
""" An array version of robustlog. Operates on a real array x.
"""
arraylog = empty(len(x), numpy.complex64)
for i in range(len(x)):
xi = x[i]
if xi > 0:
arraylog[i] = math.log(xi)
elif xi == 0.:
arraylog[i] = float('-inf')
else:
arraylog[i] = cmath.log(xi)
return arraylog
#try:
# from logsumexp import logsumexp, logsumexpcomplex, robustarraylog
#except:
# print "Warning: could not load the fast FORTRAN library for logsumexp()."
# logsumexp = _logsumexp
# logsumexpcomplex = _logsumexpcomplex
# robustarraylog = _robustarraylog
# pass
def arrayexp(x):
"""
Returns the elementwise antilog of the real array x.
We try to exponentiate with numpy.exp() and, if that fails, with
python's math.exp(). numpy.exp() is about 10 times faster but throws
an OverflowError exception for numerical underflow (e.g. exp(-800),
whereas python's math.exp() just returns zero, which is much more
helpful.
"""
try:
ex = numpy.exp(x)
except OverflowError:
print "Warning: OverflowError using numpy.exp(). Using slower Python"\
" routines instead!"
ex = numpy.empty(len(x), float)
for j in range(len(x)):
ex[j] = math.exp(x[j])
return ex
def arrayexpcomplex(x):
"""
Returns the elementwise antilog of the vector x.
We try to exponentiate with numpy.exp() and, if that fails, with python's
math.exp(). numpy.exp() is about 10 times faster but throws an
OverflowError exception for numerical underflow (e.g. exp(-800),
whereas python's math.exp() just returns zero, which is much more
helpful.
"""
try:
ex = numpy.exp(x).real
except OverflowError:
ex = numpy.empty(len(x), float)
try:
for j in range(len(x)):
ex[j] = math.exp(x[j])
except TypeError:
# Perhaps x[j] is complex. If so, try using the complex
# exponential and returning the real part.
for j in range(len(x)):
ex[j] = cmath.exp(x[j]).real
return ex
def sample_wr(population, k):
"""Chooses k random elements (with replacement) from a population.
(From the Python Cookbook).
"""
n = len(population)
_random, _int = random.random, int # speed hack
return [population[_int(_random() * n)] for i in xrange(k)]
def densefeatures(f, x):
"""Returns a dense array of non-zero evaluations of the functions fi
in the list f at the point x.
"""
return numpy.array([fi(x) for fi in f])
def densefeaturematrix(f, sample):
"""Returns an (m x n) dense array of non-zero evaluations of the
scalar functions fi in the list f at the points x_1,...,x_n in the
list sample.
"""
# Was: return numpy.array([[fi(x) for fi in f] for x in sample])
m = len(f)
n = len(sample)
F = numpy.empty((m, n), float)
for i in xrange(m):
f_i = f[i]
for j in xrange(n):
x = sample[j]
F[i,j] = f_i(x)
#for j in xrange(n):
# x = sample[j]
# for i in xrange(m):
# F[j,i] = f[i](x)
return F
def sparsefeatures(f, x, format='csc_matrix'):
""" Returns an Mx1 sparse matrix of non-zero evaluations of the
scalar functions f_1,...,f_m in the list f at the point x.
If format='ll_mat', the PySparse module (or a symlink to it) must be
available in the Python site-packages/ directory. A trimmed-down
version, patched for NumPy compatibility, is available in the SciPy
sandbox/pysparse directory.
"""
m = len(f)
if format == 'll_mat':
import spmatrix
sparsef = spmatrix.ll_mat(m, 1)
elif format in ('dok_matrix', 'csc_matrix', 'csr_matrix'):
sparsef = sparse.dok_matrix((m, 1))
for i in xrange(m):
f_i_x = f[i](x)
if f_i_x != 0:
sparsef[i, 0] = f_i_x
if format == 'csc_matrix':
print "Converting to CSC matrix ..."
return sparsef.tocsc()
elif format == 'csr_matrix':
print "Converting to CSR matrix ..."
return sparsef.tocsr()
else:
return sparsef
def sparsefeaturematrix(f, sample, format='csc_matrix'):
"""Returns an (m x n) sparse matrix of non-zero evaluations of the scalar
or vector functions f_1,...,f_m in the list f at the points
x_1,...,x_n in the sequence 'sample'.
If format='ll_mat', the PySparse module (or a symlink to it) must be
available in the Python site-packages/ directory. A trimmed-down
version, patched for NumPy compatibility, is available in the SciPy
sandbox/pysparse directory.
"""
m = len(f)
n = len(sample)
if format == 'll_mat':
import spmatrix
sparseF = spmatrix.ll_mat(m, n)
elif format in ('dok_matrix', 'csc_matrix', 'csr_matrix'):
sparseF = sparse.dok_matrix((m, n))
else:
raise ValueError("sparse matrix format not recognized")
for i in xrange(m):
f_i = f[i]
for j in xrange(n):
x = sample[j]
f_i_x = f_i(x)
if f_i_x != 0:
sparseF[i,j] = f_i_x
if format == 'csc_matrix':
return sparseF.tocsc()
elif format == 'csr_matrix':
return sparseF.tocsr()
else:
return sparseF
def dotprod(u,v):
"""
This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting
ndarray, scipy spmatrix, and PySparse arrays.
Returns the dot product of the (1 x m) sparse array u with the
(m x 1) (dense) numpy array v.
"""
#print "Taking the dot product u.v, where"
#print "u has shape " + str(u.shape)
#print "v = " + str(v)
try:
dotprod = numpy.array([0.0]) # a 1x1 array. Required by spmatrix.
u.matvec(v, dotprod)
return dotprod[0] # extract the scalar
except AttributeError:
# Assume u is a dense array.
return numpy.dot(u,v)
def innerprod(A,v):
"""
This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting
ndarray, scipy spmatrix, and PySparse arrays.
Returns the inner product of the (m x n) dense or sparse matrix A
with the n-element dense array v. This is a wrapper for A.dot(v) for
dense arrays and spmatrix objects, and for A.matvec(v, result) for
PySparse matrices.
"""
# We assume A is sparse.
(m, n) = A.shape
vshape = v.shape
try:
(p,) = vshape
except ValueError:
(p, q) = vshape
if n != p:
raise TypeError("matrix dimensions are incompatible")
if isinstance(v, ndarray):
try:
# See if A is sparse
A.matvec
except AttributeError:
# It looks like A is dense
return numpy.dot(A, v)
else:
# Assume A is sparse
if sparse.isspmatrix(A):
innerprod = A.matvec(v) # This returns a float32 type. Why???
return innerprod
else:
# Assume PySparse format
innerprod = numpy.empty(m, float)
A.matvec(v, innerprod)
return innerprod
elif sparse.isspmatrix(v):
return A * v
else:
raise TypeError("unsupported types for inner product")
def innerprodtranspose(A,v):
"""
This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting
ndarray, scipy spmatrix, and PySparse arrays.
Computes A^T V, where A is a dense or sparse matrix and V is a numpy
array. If A is sparse, V must be a rank-1 array, not a matrix. This
function is efficient for large matrices A. This is a wrapper for
u.T.dot(v) for dense arrays and spmatrix objects, and for
u.matvec_transp(v, result) for pysparse matrices.
"""
(m, n) = A.shape
#pdb.set_trace()
if hasattr(A, 'matvec_transp'):
# A looks like a PySparse matrix
if len(v.shape) == 1:
innerprod = numpy.empty(n, float)
A.matvec_transp(v, innerprod)
else:
raise TypeError("innerprodtranspose(A,v) requires that v be "
"a vector (rank-1 dense array) if A is sparse.")
return innerprod
elif sparse.isspmatrix(A):
return (A.conj().transpose() * v).transpose()
else:
# Assume A is dense
if isinstance(v, numpy.ndarray):
# v is also dense
if len(v.shape) == 1:
# We can't transpose a rank-1 matrix into a row vector, so
# we reshape it.
vm = v.shape[0]
vcolumn = numpy.reshape(v, (1, vm))
x = numpy.dot(vcolumn, A)
return numpy.reshape(x, (n,))
else:
#(vm, vn) = v.shape
# Assume vm == m
x = numpy.dot(numpy.transpose(v), A)
return numpy.transpose(x)
else:
raise TypeError("unsupported types for inner product")
def rowmeans(A):
"""
This is a wrapper for general dense or sparse dot products.
It is only necessary as a common interface for supporting ndarray,
scipy spmatrix, and PySparse arrays.
Returns a dense (m x 1) vector representing the mean of the rows of A,
which be an (m x n) sparse or dense matrix.
>>> a = numpy.array([[1,2],[3,4]], float)
>>> rowmeans(a)
array([ 1.5, 3.5])
"""
if type(A) is numpy.ndarray:
return A.mean(1)
else:
# Assume it's sparse
try:
n = A.shape[1]
except AttributeError:
raise TypeError("rowmeans() only works with sparse and dense "
"arrays")
rowsum = innerprod(A, numpy.ones(n, float))
return rowsum / float(n)
def columnmeans(A):
"""
This is a wrapper for general dense or sparse dot products.
It is only necessary as a common interface for supporting ndarray,
scipy spmatrix, and PySparse arrays.
Returns a dense (1 x n) vector with the column averages of A, which can
be an (m x n) sparse or dense matrix.
>>> a = numpy.array([[1,2],[3,4]],'d')
>>> columnmeans(a)
array([ 2., 3.])
"""
if type(A) is numpy.ndarray:
return A.mean(0)
else:
# Assume it's sparse
try:
m = A.shape[0]
except AttributeError:
raise TypeError("columnmeans() only works with sparse and dense "
"arrays")
columnsum = innerprodtranspose(A, numpy.ones(m, float))
return columnsum / float(m)
def columnvariances(A):
"""
This is a wrapper for general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray,
scipy spmatrix, and PySparse arrays.
Returns a dense (1 x n) vector with unbiased estimators for the column
variances for each column of the (m x n) sparse or dense matrix A. (The
normalization is by (m - 1).)
>>> a = numpy.array([[1,2], [3,4]], 'd')
>>> columnvariances(a)
array([ 2., 2.])
"""
if type(A) is numpy.ndarray:
return numpy.std(A,0)**2
else:
try:
m = A.shape[0]
except AttributeError:
raise TypeError("columnvariances() only works with sparse "
"and dense arrays")
means = columnmeans(A)
return columnmeans((A-means)**2) * (m/(m-1.0))
def flatten(a):
"""Flattens the sparse matrix or dense array/matrix 'a' into a
1-dimensional array
"""
if sparse.isspmatrix(a):
return a.A.flatten()
else:
return numpy.asarray(a).flatten()
class DivergenceError(Exception):
"""Exception raised if the entropy dual has no finite minimum.
"""
def __init__(self, message):
self.message = message
Exception.__init__(self)
def __str__(self):
return repr(self.message)
def _test():
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
|