1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
''' Some tests for filters '''
import numpy as np
from numpy.testing import assert_equal, assert_raises
import scipy.ndimage as sndi
def test_ticket_701():
# Test generic filter sizes
arr = np.arange(4).reshape((2,2))
func = lambda x: np.min(x)
res = sndi.generic_filter(arr, func, size=(1,1))
# The following raises an error unless ticket 701 is fixed
res2 = sndi.generic_filter(arr, func, size=1)
assert_equal(res, res2)
def test_orders_gauss():
# Check order inputs to Gaussians
arr = np.zeros((1,))
yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=0)
yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=3)
yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, -1
yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, 4
yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=0)
yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=3)
yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, -1
yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, 4
def test_valid_origins():
"""Regression test for #1311."""
func = lambda x: np.mean(x)
data = np.array([1,2,3,4,5], dtype=np.float64)
assert_raises(ValueError, sndi.generic_filter, data, func, size=3,
origin=2)
func2 = lambda x, y: np.mean(x + y)
assert_raises(ValueError, sndi.generic_filter1d, data, func,
filter_size=3, origin=2)
assert_raises(ValueError, sndi.percentile_filter, data, 0.2, size=3,
origin=2)
for filter in [sndi.uniform_filter, sndi.minimum_filter,
sndi.maximum_filter, sndi.maximum_filter1d,
sndi.median_filter, sndi.minimum_filter1d]:
# This should work, since for size == 3, the valid range for origin is
# -1 to 1.
filter(data, 3, origin=-1)
filter(data, 3, origin=1)
# Just check this raises an error instead of silently accepting or
# segfaulting.
assert_raises(ValueError, filter, data, 3, origin=2)
|