1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
"""
=====================================================
Optimization and root finding (:mod:`scipy.optimize`)
=====================================================
.. currentmodule:: scipy.optimize
Optimization
============
General-purpose
---------------
.. autosummary::
:toctree: generated/
fmin - Nelder-Mead Simplex algorithm
fmin_powell - Powell's (modified) level set method
fmin_cg - Non-linear (Polak-Ribiere) conjugate gradient algorithm
fmin_bfgs - Quasi-Newton method (Broydon-Fletcher-Goldfarb-Shanno)
fmin_ncg - Line-search Newton Conjugate Gradient
leastsq - Minimize the sum of squares of M equations in N unknowns
Constrained (multivariate)
--------------------------
.. autosummary::
:toctree: generated/
fmin_l_bfgs_b - Zhu, Byrd, and Nocedal's constrained optimizer
fmin_tnc - Truncated Newton code
fmin_cobyla - Constrained optimization by linear approximation
fmin_slsqp - Minimization using sequential least-squares programming
nnls - Linear least-squares problem with non-negativity constraint
Global
------
.. autosummary::
:toctree: generated/
anneal - Simulated annealing
brute - Brute force searching optimizer
Scalar function minimizers
--------------------------
.. autosummary::
:toctree: generated/
fminbound - Bounded minimization of a scalar function
brent - 1-D function minimization using Brent method
golden - 1-D function minimization using Golden Section method
bracket - Bracket a minimum, given two starting points
Fitting
=======
.. autosummary::
:toctree: generated/
curve_fit -- Fit curve to a set of points
Root finding
============
Scalar functions
----------------
.. autosummary::
:toctree: generated/
brentq - quadratic interpolation Brent method
brenth - Brent method, modified by Harris with hyperbolic extrapolation
ridder - Ridder's method
bisect - Bisection method
newton - Secant method or Newton's method
Fixed point finding:
.. autosummary::
:toctree: generated/
fixed_point - Single-variable fixed-point solver
Multidimensional
----------------
General nonlinear solvers:
.. autosummary::
:toctree: generated/
fsolve - Non-linear multi-variable equation solver
broyden1 - Broyden's first method
broyden2 - Broyden's second method
Large-scale nonlinear solvers:
.. autosummary::
:toctree: generated/
newton_krylov
anderson
Simple iterations:
.. autosummary::
:toctree: generated/
excitingmixing
linearmixing
diagbroyden
:mod:`Additional information on the nonlinear solvers <scipy.optimize.nonlin>`
Utility Functions
=================
.. autosummary::
:toctree: generated/
line_search - Return a step that satisfies the strong Wolfe conditions
check_grad - Check the supplied derivative using finite differences
"""
from optimize import *
from minpack import *
from zeros import *
from anneal import *
from lbfgsb import fmin_l_bfgs_b
from tnc import fmin_tnc
from cobyla import fmin_cobyla
from nonlin import *
from slsqp import fmin_slsqp
from nnls import nnls
__all__ = filter(lambda s:not s.startswith('_'),dir())
from numpy.testing import Tester
test = Tester().test
bench = Tester().bench
|