1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
# Original Author: Travis Oliphant 2002
# Bug-fixes in 2006 by Tim Leslie
import numpy
from numpy import asarray, tan, exp, ones, squeeze, sign, \
all, log, sqrt, pi, shape, array, minimum, where
from numpy import random
__all__ = ['anneal']
_double_min = numpy.finfo(float).min
_double_max = numpy.finfo(float).max
class base_schedule(object):
def __init__(self):
self.dwell = 20
self.learn_rate = 0.5
self.lower = -10
self.upper = 10
self.Ninit = 50
self.accepted = 0
self.tests = 0
self.feval = 0
self.k = 0
self.T = None
def init(self, **options):
self.__dict__.update(options)
self.lower = asarray(self.lower)
self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower)
self.upper = asarray(self.upper)
self.upper = where(self.upper == numpy.PINF, _double_max, self.upper)
self.k = 0
self.accepted = 0
self.feval = 0
self.tests = 0
def getstart_temp(self, best_state):
""" Find a matching starting temperature and starting parameters vector
i.e. find x0 such that func(x0) = T0.
Parameters
----------
best_state : _state
A _state object to store the function value and x0 found.
Returns
-------
x0 : array
The starting parameters vector.
"""
assert(not self.dims is None)
lrange = self.lower
urange = self.upper
fmax = _double_min
fmin = _double_max
for _ in range(self.Ninit):
x0 = random.uniform(size=self.dims)*(urange-lrange) + lrange
fval = self.func(x0, *self.args)
self.feval += 1
if fval > fmax:
fmax = fval
if fval < fmin:
fmin = fval
best_state.cost = fval
best_state.x = array(x0)
self.T0 = (fmax-fmin)*1.5
return best_state.x
def accept_test(self, dE):
T = self.T
self.tests += 1
if dE < 0:
self.accepted += 1
return 1
p = exp(-dE*1.0/self.boltzmann/T)
if (p > random.uniform(0.0, 1.0)):
self.accepted += 1
return 1
return 0
def update_guess(self, x0):
pass
def update_temp(self, x0):
pass
# A schedule due to Lester Ingber
class fast_sa(base_schedule):
def init(self, **options):
self.__dict__.update(options)
if self.m is None:
self.m = 1.0
if self.n is None:
self.n = 1.0
self.c = self.m * exp(-self.n * self.quench)
def update_guess(self, x0):
x0 = asarray(x0)
u = squeeze(random.uniform(0.0, 1.0, size=self.dims))
T = self.T
y = sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)
xc = y*(self.upper - self.lower)
xnew = x0 + xc
return xnew
def update_temp(self):
self.T = self.T0*exp(-self.c * self.k**(self.quench))
self.k += 1
return
class cauchy_sa(base_schedule):
def update_guess(self, x0):
x0 = asarray(x0)
numbers = squeeze(random.uniform(-pi/2, pi/2, size=self.dims))
xc = self.learn_rate * self.T * tan(numbers)
xnew = x0 + xc
return xnew
def update_temp(self):
self.T = self.T0/(1+self.k)
self.k += 1
return
class boltzmann_sa(base_schedule):
def update_guess(self, x0):
std = minimum(sqrt(self.T)*ones(self.dims), (self.upper-self.lower)/3.0/self.learn_rate)
x0 = asarray(x0)
xc = squeeze(random.normal(0, 1.0, size=self.dims))
xnew = x0 + xc*std*self.learn_rate
return xnew
def update_temp(self):
self.k += 1
self.T = self.T0 / log(self.k+1.0)
return
class _state(object):
def __init__(self):
self.x = None
self.cost = None
# TODO:
# allow for general annealing temperature profile
# in that case use update given by alpha and omega and
# variation of all previous updates and temperature?
# Simulated annealing
def anneal(func, x0, args=(), schedule='fast', full_output=0,
T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400,
boltzmann=1.0, learn_rate=0.5, feps=1e-6, quench=1.0, m=1.0, n=1.0,
lower=-100, upper=100, dwell=50):
"""Minimize a function using simulated annealing.
Schedule is a schedule class implementing the annealing schedule.
Available ones are 'fast', 'cauchy', 'boltzmann'
Parameters
----------
func : callable f(x, *args)
Function to be optimized.
x0 : ndarray
Initial guess.
args : tuple
Extra parameters to `func`.
schedule : base_schedule
Annealing schedule to use (a class).
full_output : bool
Whether to return optional outputs.
T0 : float
Initial Temperature (estimated as 1.2 times the largest
cost-function deviation over random points in the range).
Tf : float
Final goal temperature.
maxeval : int
Maximum function evaluations.
maxaccept : int
Maximum changes to accept.
maxiter : int
Maximum cooling iterations.
learn_rate : float
Scale constant for adjusting guesses.
boltzmann : float
Boltzmann constant in acceptance test
(increase for less stringent test at each temperature).
feps : float
Stopping relative error tolerance for the function value in
last four coolings.
quench, m, n : float
Parameters to alter fast_sa schedule.
lower, upper : float or ndarray
Lower and upper bounds on `x`.
dwell : int
The number of times to search the space at each temperature.
Returns
-------
xmin : ndarray
Point giving smallest value found.
Jmin : float
Minimum value of function found.
T : float
Final temperature.
feval : int
Number of function evaluations.
iters : int
Number of cooling iterations.
accept : int
Number of tests accepted.
retval : int
Flag indicating stopping condition::
0 : Points no longer changing
1 : Cooled to final temperature
2 : Maximum function evaluations
3 : Maximum cooling iterations reached
4 : Maximum accepted query locations reached
5 : Final point not the minimum amongst encountered points
Notes
-----
Simulated annealing is a random algorithm which uses no derivative
information from the function being optimized. In practice it has
been more useful in discrete optimization than continuous
optimization, as there are usually better algorithms for continuous
optimization problems.
Some experimentation by trying the difference temperature
schedules and altering their parameters is likely required to
obtain good performance.
The randomness in the algorithm comes from random sampling in numpy.
To obtain the same results you can call numpy.random.seed with the
same seed immediately before calling scipy.optimize.anneal.
We give a brief description of how the three temperature schedules
generate new points and vary their temperature. Temperatures are
only updated with iterations in the outer loop. The inner loop is
over loop over xrange(dwell), and new points are generated for
every iteration in the inner loop. (Though whether the proposed
new points are accepted is probabilistic.)
For readability, let d denote the dimension of the inputs to func.
Also, let x_old denote the previous state, and k denote the
iteration number of the outer loop. All other variables not
defined below are input variables to scipy.optimize.anneal itself.
In the 'fast' schedule the updates are ::
u ~ Uniform(0, 1, size=d)
y = sgn(u - 0.5) * T * ((1+ 1/T)**abs(2u-1) -1.0)
xc = y * (upper - lower)
x_new = x_old + xc
c = n * exp(-n * quench)
T_new = T0 * exp(-c * k**quench)
In the 'cauchy' schedule the updates are ::
u ~ Uniform(-pi/2, pi/2, size=d)
xc = learn_rate * T * tan(u)
x_new = x_old + xc
T_new = T0 / (1+k)
In the 'boltzmann' schedule the updates are ::
std = minimum( sqrt(T) * ones(d), (upper-lower) / (3*learn_rate) )
y ~ Normal(0, std, size=d)
x_new = x_old + learn_rate * y
T_new = T0 / log(1+k)
"""
x0 = asarray(x0)
lower = asarray(lower)
upper = asarray(upper)
schedule = eval(schedule+'_sa()')
# initialize the schedule
schedule.init(dims=shape(x0),func=func,args=args,boltzmann=boltzmann,T0=T0,
learn_rate=learn_rate, lower=lower, upper=upper,
m=m, n=n, quench=quench, dwell=dwell)
current_state, last_state, best_state = _state(), _state(), _state()
if T0 is None:
x0 = schedule.getstart_temp(best_state)
else:
best_state.x = None
best_state.cost = numpy.Inf
last_state.x = asarray(x0).copy()
fval = func(x0,*args)
schedule.feval += 1
last_state.cost = fval
if last_state.cost < best_state.cost:
best_state.cost = fval
best_state.x = asarray(x0).copy()
schedule.T = schedule.T0
fqueue = [100, 300, 500, 700]
iters = 0
while 1:
for n in xrange(dwell):
current_state.x = schedule.update_guess(last_state.x)
current_state.cost = func(current_state.x,*args)
schedule.feval += 1
dE = current_state.cost - last_state.cost
if schedule.accept_test(dE):
last_state.x = current_state.x.copy()
last_state.cost = current_state.cost
if last_state.cost < best_state.cost:
best_state.x = last_state.x.copy()
best_state.cost = last_state.cost
schedule.update_temp()
iters += 1
# Stopping conditions
# 0) last saved values of f from each cooling step
# are all very similar (effectively cooled)
# 1) Tf is set and we are below it
# 2) maxeval is set and we are past it
# 3) maxiter is set and we are past it
# 4) maxaccept is set and we are past it
fqueue.append(squeeze(last_state.cost))
fqueue.pop(0)
af = asarray(fqueue)*1.0
if all(abs((af-af[0])/af[0]) < feps):
retval = 0
if abs(af[-1]-best_state.cost) > feps*10:
retval = 5
print "Warning: Cooled to %f at %s but this is not" \
% (squeeze(last_state.cost), str(squeeze(last_state.x))) \
+ " the smallest point found."
break
if (Tf is not None) and (schedule.T < Tf):
retval = 1
break
if (maxeval is not None) and (schedule.feval > maxeval):
retval = 2
break
if (iters > maxiter):
print "Warning: Maximum number of iterations exceeded."
retval = 3
break
if (maxaccept is not None) and (schedule.accepted > maxaccept):
retval = 4
break
if full_output:
return best_state.x, best_state.cost, schedule.T, \
schedule.feval, iters, schedule.accepted, retval
else:
return best_state.x, retval
if __name__ == "__main__":
from numpy import cos
# minimum expected at ~-0.195
func = lambda x: cos(14.5*x-0.3) + (x+0.2)*x
print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='cauchy')
print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='fast')
print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='boltzmann')
# minimum expected at ~[-0.195, -0.1]
func = lambda x: cos(14.5*x[0]-0.3) + (x[1]+0.2)*x[1] + (x[0]+0.2)*x[0]
print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='cauchy')
print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='fast')
print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='boltzmann')
|