File: linesearch.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (614 lines) | stat: -rw-r--r-- 17,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
from scipy.optimize import minpack2
import numpy as np
from numpy.compat import asbytes

__all__ = ['line_search_wolfe1', 'line_search_wolfe2',
           'scalar_search_wolfe1', 'scalar_search_wolfe2',
           'line_search_armijo']

#------------------------------------------------------------------------------
# Minpack's Wolfe line and scalar searches
#------------------------------------------------------------------------------

def line_search_wolfe1(f, fprime, xk, pk, gfk=None,
                       old_fval=None, old_old_fval=None,
                       args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8,
                       xtol=1e-14):
    """
    As `scalar_search_wolfe1` but do a line search to direction `pk`

    Parameters
    ----------
    f : callable
        Function `f(x)`
    fprime : callable
        Gradient of `f`
    xk : array_like
        Current point
    pk : array_like
        Search direction

    gfk : array_like, optional
        Gradient of `f` at point `xk`
    old_fval : float, optional
        Value of `f` at point `xk`
    old_old_fval : float, optional
        Value of `f` at point preceding `xk`

    The rest of the parameters are the same as for `scalar_search_wolfe1`.

    Returns
    -------
    stp, f_count, g_count, fval, old_fval
        As in `line_search_wolfe1`
    gval : array
        Gradient of `f` at the final point

    """
    if gfk is None:
        gfk = fprime(xk)

    if isinstance(fprime, tuple):
        eps = fprime[1]
        fprime = fprime[0]
        newargs = (f, eps) + args
        gradient = False
    else:
        newargs = args
        gradient = True

    gval = [gfk]
    gc = [0]
    fc = [0]

    def phi(s):
        fc[0] += 1
        return f(xk + s*pk, *args)

    def derphi(s):
        gval[0] = fprime(xk + s*pk, *newargs)
        if gradient:
            gc[0] += 1
        else:
            fc[0] += len(xk) + 1
        return np.dot(gval[0], pk)

    derphi0 = np.dot(gfk, pk)

    stp, fval, old_fval = scalar_search_wolfe1(
            phi, derphi, old_fval, old_old_fval, derphi0,
            c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol)

    return stp, fc[0], gc[0], fval, old_fval, gval[0]


def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None,
                         c1=1e-4, c2=0.9,
                         amax=50, amin=1e-8, xtol=1e-14):
    """
    Scalar function search for alpha that satisfies strong Wolfe conditions

    alpha > 0 is assumed to be a descent direction.

    Parameters
    ----------
    phi : callable phi(alpha)
        Function at point `alpha`
    derphi : callable dphi(alpha)
        Derivative `d phi(alpha)/ds`. Returns a scalar.

    phi0 : float, optional
        Value of `f` at 0
    old_phi0 : float, optional
        Value of `f` at the previous point
    derphi0 : float, optional
        Value `derphi` at 0
    amax : float, optional
        Maximum step size
    c1, c2 : float, optional
        Wolfe parameters

    Returns
    -------
    alpha : float
        Step size, or None if no suitable step was found
    phi : float
        Value of `phi` at the new point `alpha`
    phi0 : float
        Value of `phi` at `alpha=0`

    Notes
    -----
    Uses routine DCSRCH from MINPACK.

    """

    if phi0 is None:
        phi0 = phi(0.)
    if derphi0 is None:
        derphi0 = derphi(0.)

    if old_phi0 is not None:
        alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0)
        if alpha1 < 0:
            alpha1 = 1.0
    else:
        alpha1 = 1.0

    phi1 = phi0
    derphi1 = derphi0
    isave = np.zeros((2,), np.intc)
    dsave = np.zeros((13,), float)
    task = asbytes('START')

    while 1:
        stp, phi1, derphi1, task = minpack2.dcsrch(alpha1, phi1, derphi1,
                                                   c1, c2, xtol, task,
                                                   amin, amax, isave, dsave)
        if task[:2] == asbytes('FG') and not np.isnan(phi1):
            alpha1 = stp
            phi1 = phi(stp)
            derphi1 = derphi(stp)
        else:
            break

    if task[:5] == asbytes('ERROR') or task[:4] == asbytes('WARN'):
        stp = None  # failed

    return stp, phi1, phi0

line_search = line_search_wolfe1

#------------------------------------------------------------------------------
# Pure-Python Wolfe line and scalar searches
#------------------------------------------------------------------------------

def line_search_wolfe2(f, myfprime, xk, pk, gfk=None, old_fval=None,
                       old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=50):
    """Find alpha that satisfies strong Wolfe conditions.

    Parameters
    ----------
    f : callable f(x,*args)
        Objective function.
    myfprime : callable f'(x,*args)
        Objective function gradient (can be None).
    xk : ndarray
        Starting point.
    pk : ndarray
        Search direction.
    gfk : ndarray, optional
        Gradient value for x=xk (xk being the current parameter
        estimate). Will be recomputed if omitted.
    old_fval : float, optional
        Function value for x=xk. Will be recomputed if omitted.
    old_old_fval : float, optional
        Function value for the point preceding x=xk
    args : tuple, optional
        Additional arguments passed to objective function.
    c1 : float, optional
        Parameter for Armijo condition rule.
    c2 : float, optional
        Parameter for curvature condition rule.

    Returns
    -------
    alpha0 : float
        Alpha for which ``x_new = x0 + alpha * pk``.
    fc : int
        Number of function evaluations made.
    gc : int
        Number of gradient evaluations made.

    Notes
    -----
    Uses the line search algorithm to enforce strong Wolfe
    conditions.  See Wright and Nocedal, 'Numerical Optimization',
    1999, pg. 59-60.

    For the zoom phase it uses an algorithm by [...].

    """
    fc = [0]
    gc = [0]
    gval = [None]

    def phi(alpha):
        fc[0] += 1
        return f(xk + alpha * pk, *args)

    if isinstance(myfprime, tuple):
        def derphi(alpha):
            fc[0] += len(xk)+1
            eps = myfprime[1]
            fprime = myfprime[0]
            newargs = (f,eps) + args
            gval[0] = fprime(xk+alpha*pk, *newargs)  # store for later use
            return np.dot(gval[0], pk)
    else:
        fprime = myfprime
        def derphi(alpha):
            gc[0] += 1
            gval[0] = fprime(xk+alpha*pk, *args)  # store for later use
            return np.dot(gval[0], pk)

    derphi0 = np.dot(gfk, pk)

    alpha_star, phi_star, old_fval, derphi_star = \
                scalar_search_wolfe2(phi, derphi, old_fval, old_old_fval,
                                     derphi0, c1, c2, amax)

    if derphi_star is not None:
        # derphi_star is a number (derphi) -- so use the most recently
        # calculated gradient used in computing it derphi = gfk*pk
        # this is the gradient at the next step no need to compute it
        # again in the outer loop.
        derphi_star = gval[0]

    return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star


def scalar_search_wolfe2(phi, derphi=None, phi0=None,
                         old_phi0=None, derphi0=None,
                         c1=1e-4, c2=0.9, amax=50):
    """Find alpha that satisfies strong Wolfe conditions.

    alpha > 0 is assumed to be a descent direction.

    Parameters
    ----------
    phi : callable f(x,*args)
        Objective scalar function.

    derphi : callable f'(x,*args), optional
        Objective function derivative (can be None)
    phi0 : float, optional
        Value of phi at s=0
    old_phi0 : float, optional
        Value of phi at previous point
    derphi0 : float, optional
        Value of derphi at s=0
    args : tuple
        Additional arguments passed to objective function.
    c1 : float
        Parameter for Armijo condition rule.
    c2 : float
        Parameter for curvature condition rule.

    Returns
    -------
    alpha_star : float
        Best alpha
    phi_star
        phi at alpha_star
    phi0
        phi at 0
    derphi_star
        derphi at alpha_star

    Notes
    -----
    Uses the line search algorithm to enforce strong Wolfe
    conditions.  See Wright and Nocedal, 'Numerical Optimization',
    1999, pg. 59-60.

    For the zoom phase it uses an algorithm by [...].

    """

    if phi0 is None:
        phi0 = phi(0.)

    if derphi0 is None and derphi is not None:
        derphi0 = derphi(0.)

    alpha0 = 0
    if old_phi0 is not None:
        alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0)
    else:
        alpha1 = 1.0

    if alpha1 < 0:
        alpha1 = 1.0

    if alpha1 == 0:
        # This shouldn't happen. Perhaps the increment has slipped below
        # machine precision?  For now, set the return variables skip the
        # useless while loop, and raise warnflag=2 due to possible imprecision.
        alpha_star = None
        phi_star = phi0
        phi0 = old_phi0
        derphi_star = None

    phi_a1 = phi(alpha1)
    #derphi_a1 = derphi(alpha1)  evaluated below

    phi_a0 = phi0
    derphi_a0 = derphi0

    i = 1
    maxiter = 10
    while 1:         # bracketing phase
        if alpha1 == 0:
            break
        if (phi_a1 > phi0 + c1*alpha1*derphi0) or \
           ((phi_a1 >= phi_a0) and (i > 1)):
            alpha_star, phi_star, derphi_star = \
                        _zoom(alpha0, alpha1, phi_a0,
                              phi_a1, derphi_a0, phi, derphi,
                              phi0, derphi0, c1, c2)
            break

        derphi_a1 = derphi(alpha1)
        if (abs(derphi_a1) <= -c2*derphi0):
            alpha_star = alpha1
            phi_star = phi_a1
            derphi_star = derphi_a1
            break

        if (derphi_a1 >= 0):
            alpha_star, phi_star, derphi_star = \
                        _zoom(alpha1, alpha0, phi_a1,
                              phi_a0, derphi_a1, phi, derphi,
                              phi0, derphi0, c1, c2)
            break

        alpha2 = 2 * alpha1   # increase by factor of two on each iteration
        i = i + 1
        alpha0 = alpha1
        alpha1 = alpha2
        phi_a0 = phi_a1
        phi_a1 = phi(alpha1)
        derphi_a0 = derphi_a1

        # stopping test if lower function not found
        if i > maxiter:
            alpha_star = alpha1
            phi_star = phi_a1
            derphi_star = None
            break

    return alpha_star, phi_star, phi0, derphi_star


def _cubicmin(a,fa,fpa,b,fb,c,fc):
    """
    Finds the minimizer for a cubic polynomial that goes through the
    points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.

    If no minimizer can be found return None

    """
    # f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D

    C = fpa
    D = fa
    db = b-a
    dc = c-a
    if (db == 0) or (dc == 0) or (b==c): return None
    denom = (db*dc)**2 * (db-dc)
    d1 = np.empty((2,2))
    d1[0,0] = dc**2
    d1[0,1] = -db**2
    d1[1,0] = -dc**3
    d1[1,1] = db**3
    [A,B] = np.dot(d1, np.asarray([fb-fa-C*db,fc-fa-C*dc]).flatten())
    A /= denom
    B /= denom
    radical = B*B-3*A*C
    if radical < 0:  return None
    if (A == 0): return None
    xmin = a + (-B + np.sqrt(radical))/(3*A)
    return xmin


def _quadmin(a,fa,fpa,b,fb):
    """
    Finds the minimizer for a quadratic polynomial that goes through
    the points (a,fa), (b,fb) with derivative at a of fpa,

    """
    # f(x) = B*(x-a)^2 + C*(x-a) + D
    D = fa
    C = fpa
    db = b-a*1.0
    if (db==0): return None
    B = (fb-D-C*db)/(db*db)
    if (B <= 0): return None
    xmin = a  - C / (2.0*B)
    return xmin

def _zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo,
          phi, derphi, phi0, derphi0, c1, c2):
    """
    Part of the optimization algorithm in `scalar_search_wolfe2`.
    """

    maxiter = 10
    i = 0
    delta1 = 0.2  # cubic interpolant check
    delta2 = 0.1  # quadratic interpolant check
    phi_rec = phi0
    a_rec = 0
    while 1:
        # interpolate to find a trial step length between a_lo and
        # a_hi Need to choose interpolation here.  Use cubic
        # interpolation and then if the result is within delta *
        # dalpha or outside of the interval bounded by a_lo or a_hi
        # then use quadratic interpolation, if the result is still too
        # close, then use bisection

        dalpha = a_hi-a_lo;
        if dalpha < 0: a,b = a_hi,a_lo
        else: a,b = a_lo, a_hi

        # minimizer of cubic interpolant
        # (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
        #
        # if the result is too close to the end points (or out of the
        # interval) then use quadratic interpolation with phi_lo,
        # derphi_lo and phi_hi if the result is stil too close to the
        # end points (or out of the interval) then use bisection

        if (i > 0):
            cchk = delta1*dalpha
            a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec)
        if (i==0) or (a_j is None) or (a_j > b-cchk) or (a_j < a+cchk):
            qchk = delta2*dalpha
            a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi)
            if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk):
                a_j = a_lo + 0.5*dalpha

        # Check new value of a_j

        phi_aj = phi(a_j)
        if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo):
            phi_rec = phi_hi
            a_rec = a_hi
            a_hi = a_j
            phi_hi = phi_aj
        else:
            derphi_aj = derphi(a_j)
            if abs(derphi_aj) <= -c2*derphi0:
                a_star = a_j
                val_star = phi_aj
                valprime_star = derphi_aj
                break
            if derphi_aj*(a_hi - a_lo) >= 0:
                phi_rec = phi_hi
                a_rec = a_hi
                a_hi = a_lo
                phi_hi = phi_lo
            else:
                phi_rec = phi_lo
                a_rec = a_lo
            a_lo = a_j
            phi_lo = phi_aj
            derphi_lo = derphi_aj
        i += 1
        if (i > maxiter):
            a_star = a_j
            val_star = phi_aj
            valprime_star = None
            break
    return a_star, val_star, valprime_star


#------------------------------------------------------------------------------
# Armijo line and scalar searches
#------------------------------------------------------------------------------

def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
    """Minimize over alpha, the function ``f(xk+alpha pk)``.

    Parameters
    ----------
    f : callable
        Function to be minimized.
    xk : array_like
        Current point.
    pk : array_like
        Search direction.
    gfk : array_like, optional
        Gradient of `f` at point `xk`.
    old_fval : float
        Value of `f` at point `xk`.
    args : tuple, optional
        Optional arguments.
    c1 : float, optional
        Value to control stopping criterion.
    alpha0 : scalar, optional
        Value of `alpha` at start of the optimization.

    Returns
    -------
    alpha
    f_count
    f_val_at_alpha

    Notes
    -----
    Uses the interpolation algorithm (Armijo backtracking) as suggested by
    Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57

    """
    xk = np.atleast_1d(xk)
    fc = [0]

    def phi(alpha1):
        fc[0] += 1
        return f(xk + alpha1*pk, *args)

    if old_fval is None:
        phi0 = phi(0.)
    else:
        phi0 = old_fval # compute f(xk) -- done in past loop

    derphi0 = np.dot(gfk, pk)
    alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1, alpha0=alpha0)
    return alpha, fc[0], phi1

def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
    """
    Compatibility wrapper for `line_search_armijo`
    """
    r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1,
                           alpha0=alpha0)
    return r[0], r[1], 0, r[2]

def scalar_search_armijo(phi, phi0, derphi0, c1=1e-4, alpha0=1, amin=0):
    """Minimize over alpha, the function ``phi(alpha)``.

    Uses the interpolation algorithm (Armijo backtracking) as suggested by
    Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57

    alpha > 0 is assumed to be a descent direction.

    Returns
    -------
    alpha
    phi1

    """
    phi_a0 = phi(alpha0)
    if phi_a0 <= phi0 + c1*alpha0*derphi0:
        return alpha0, phi_a0

    # Otherwise compute the minimizer of a quadratic interpolant:

    alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0)
    phi_a1 = phi(alpha1)

    if (phi_a1 <= phi0 + c1*alpha1*derphi0):
        return alpha1, phi_a1

    # Otherwise loop with cubic interpolation until we find an alpha which
    # satifies the first Wolfe condition (since we are backtracking, we will
    # assume that the value of alpha is not too small and satisfies the second
    # condition.

    while alpha1 > amin:       # we are assuming alpha>0 is a descent direction
        factor = alpha0**2 * alpha1**2 * (alpha1-alpha0)
        a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \
            alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0)
        a = a / factor
        b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \
            alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0)
        b = b / factor

        alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a)
        phi_a2 = phi(alpha2)

        if (phi_a2 <= phi0 + c1*alpha2*derphi0):
            return alpha2, phi_a2

        if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96:
            alpha2 = alpha1 / 2.0

        alpha0 = alpha1
        alpha1 = alpha2
        phi_a0 = phi_a1
        phi_a1 = phi_a2

    # Failed to find a suitable step length
    return None, phi_a1