File: minpack.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (535 lines) | stat: -rw-r--r-- 19,848 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import warnings
import _minpack

from numpy import atleast_1d, dot, take, triu, shape, eye, \
                  transpose, zeros, product, greater, array, \
                  all, where, isscalar, asarray, inf, abs

error = _minpack.error

__all__ = ['fsolve', 'leastsq', 'fixed_point', 'curve_fit']

def _check_func(checker, argname, thefunc, x0, args, numinputs, output_shape=None):
    res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
    if (output_shape is not None) and (shape(res) != output_shape):
        if (output_shape[0] != 1):
            if len(output_shape) > 1:
                if output_shape[1] == 1:
                    return shape(res)
            msg = "%s: there is a mismatch between the input and output " \
                  "shape of the '%s' argument" % (checker, argname)
            func_name = getattr(thefunc, 'func_name', None)
            if func_name:
                msg += " '%s'." % func_name
            else:
                msg += "."
            raise TypeError(msg)
    return shape(res)


def fsolve(func, x0, args=(), fprime=None, full_output=0,
           col_deriv=0, xtol=1.49012e-8, maxfev=0, band=None,
           epsfcn=0.0, factor=100, diag=None):
    """
    Find the roots of a function.

    Return the roots of the (non-linear) equations defined by
    ``func(x) = 0`` given a starting estimate.

    Parameters
    ----------
    func : callable f(x, *args)
        A function that takes at least one (possibly vector) argument.
    x0 : ndarray
        The starting estimate for the roots of ``func(x) = 0``.
    args : tuple
        Any extra arguments to `func`.
    fprime : callable(x)
        A function to compute the Jacobian of `func` with derivatives
        across the rows. By default, the Jacobian will be estimated.
    full_output : bool
        If True, return optional outputs.
    col_deriv : bool
        Specify whether the Jacobian function computes derivatives down
        the columns (faster, because there is no transpose operation).

    Returns
    -------
    x : ndarray
        The solution (or the result of the last iteration for
        an unsuccessful call).
    infodict : dict
        A dictionary of optional outputs with the keys::

          * 'nfev': number of function calls
          * 'njev': number of Jacobian calls
          * 'fvec': function evaluated at the output
          * 'fjac': the orthogonal matrix, q, produced by the QR
                    factorization of the final approximate Jacobian
                    matrix, stored column wise
          * 'r': upper triangular matrix produced by QR factorization of same
                 matrix
          * 'qtf': the vector (transpose(q) * fvec)

    ier : int
        An integer flag.  Set to 1 if a solution was found, otherwise refer
        to `mesg` for more information.
    mesg : str
        If no solution is found, `mesg` details the cause of failure.

    Other Parameters
    ----------------
    xtol : float
        The calculation will terminate if the relative error between two
        consecutive iterates is at most `xtol`.
    maxfev : int
        The maximum number of calls to the function. If zero, then
        ``100*(N+1)`` is the maximum where N is the number of elements
        in `x0`.
    band : tuple
        If set to a two-sequence containing the number of sub- and
        super-diagonals within the band of the Jacobi matrix, the
        Jacobi matrix is considered banded (only for ``fprime=None``).
    epsfcn : float
        A suitable step length for the forward-difference
        approximation of the Jacobian (for ``fprime=None``). If
        `epsfcn` is less than the machine precision, it is assumed
        that the relative errors in the functions are of the order of
        the machine precision.
    factor : float
        A parameter determining the initial step bound
        (``factor * || diag * x||``).  Should be in the interval
        ``(0.1, 100)``.
    diag : sequence
        N positive entries that serve as a scale factors for the
        variables.

    Notes
    -----
    ``fsolve`` is a wrapper around MINPACK's hybrd and hybrj algorithms.

    """
    x0 = array(x0, ndmin=1)
    n = len(x0)
    if type(args) != type(()): args = (args,)
    _check_func('fsolve', 'func', func, x0, args, n, (n,))
    Dfun = fprime
    if Dfun is None:
        if band is None:
            ml, mu = -10,-10
        else:
            ml, mu = band[:2]
        if (maxfev == 0):
            maxfev = 200*(n + 1)
        retval = _minpack._hybrd(func, x0, args, full_output, xtol,
                maxfev, ml, mu, epsfcn, factor, diag)
    else:
        _check_func('fsolve', 'fprime', Dfun, x0, args, n, (n,n))
        if (maxfev == 0):
            maxfev = 100*(n + 1)
        retval = _minpack._hybrj(func, Dfun, x0, args, full_output,
                col_deriv, xtol, maxfev, factor,diag)

    errors = {0:["Improper input parameters were entered.",TypeError],
              1:["The solution converged.", None],
              2:["The number of calls to function has "
                 "reached maxfev = %d." % maxfev, ValueError],
              3:["xtol=%f is too small, no further improvement "
                 "in the approximate\n  solution "
                 "is possible." % xtol, ValueError],
              4:["The iteration is not making good progress, as measured "
                 "by the \n  improvement from the last five "
                 "Jacobian evaluations.", ValueError],
              5:["The iteration is not making good progress, "
                 "as measured by the \n  improvement from the last "
                 "ten iterations.", ValueError],
              'unknown': ["An error occurred.", TypeError]}

    info = retval[-1]    # The FORTRAN return value
    if (info != 1 and not full_output):
        if info in [2,3,4,5]:
            msg = errors[info][0]
            warnings.warn(msg, RuntimeWarning)
        else:
            try:
                raise errors[info][1](errors[info][0])
            except KeyError:
                raise errors['unknown'][1](errors['unknown'][0])

    if full_output:
        try:
            return retval + (errors[info][0],)  # Return all + the message
        except KeyError:
            return retval + (errors['unknown'][0],)
    else:
        return retval[0]


def leastsq(func, x0, args=(), Dfun=None, full_output=0,
            col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8,
            gtol=0.0, maxfev=0, epsfcn=0.0, factor=100, diag=None):
    """
    Minimize the sum of squares of a set of equations.

    ::

        x = arg min(sum(func(y)**2,axis=0))
                 y

    Parameters
    ----------
    func : callable
        should take at least one (possibly length N vector) argument and
        returns M floating point numbers.
    x0 : ndarray
        The starting estimate for the minimization.
    args : tuple
        Any extra arguments to func are placed in this tuple.
    Dfun : callable
        A function or method to compute the Jacobian of func with derivatives
        across the rows. If this is None, the Jacobian will be estimated.
    full_output : bool
        non-zero to return all optional outputs.
    col_deriv : bool
        non-zero to specify that the Jacobian function computes derivatives
        down the columns (faster, because there is no transpose operation).
    ftol : float
        Relative error desired in the sum of squares.
    xtol : float
        Relative error desired in the approximate solution.
    gtol : float
        Orthogonality desired between the function vector and the columns of
        the Jacobian.
    maxfev : int
        The maximum number of calls to the function. If zero, then 100*(N+1) is
        the maximum where N is the number of elements in x0.
    epsfcn : float
        A suitable step length for the forward-difference approximation of the
        Jacobian (for Dfun=None). If epsfcn is less than the machine precision,
        it is assumed that the relative errors in the functions are of the
        order of the machine precision.
    factor : float
        A parameter determining the initial step bound
        (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``.
    diag : sequence
        N positive entries that serve as a scale factors for the variables.

    Returns
    -------
    x : ndarray
        The solution (or the result of the last iteration for an unsuccessful
        call).
    cov_x : ndarray
        Uses the fjac and ipvt optional outputs to construct an
        estimate of the jacobian around the solution.  ``None`` if a
        singular matrix encountered (indicates very flat curvature in
        some direction).  This matrix must be multiplied by the
        residual standard deviation to get the covariance of the
        parameter estimates -- see curve_fit.
    infodict : dict
        a dictionary of optional outputs with the key s::

            - 'nfev' : the number of function calls
            - 'fvec' : the function evaluated at the output
            - 'fjac' : A permutation of the R matrix of a QR
                     factorization of the final approximate
                     Jacobian matrix, stored column wise.
                     Together with ipvt, the covariance of the
                     estimate can be approximated.
            - 'ipvt' : an integer array of length N which defines
                     a permutation matrix, p, such that
                     fjac*p = q*r, where r is upper triangular
                     with diagonal elements of nonincreasing
                     magnitude. Column j of p is column ipvt(j)
                     of the identity matrix.
            - 'qtf'  : the vector (transpose(q) * fvec).

    mesg : str
        A string message giving information about the cause of failure.
    ier : int
        An integer flag.  If it is equal to 1, 2, 3 or 4, the solution was
        found.  Otherwise, the solution was not found. In either case, the
        optional output variable 'mesg' gives more information.

    Notes
    -----
    "leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms.

    cov_x is a Jacobian approximation to the Hessian of the least squares
    objective function.
    This approximation assumes that the objective function is based on the
    difference between some observed target data (ydata) and a (non-linear)
    function of the parameters `f(xdata, params)` ::

           func(params) = ydata - f(xdata, params)

    so that the objective function is ::

           min   sum((ydata - f(xdata, params))**2, axis=0)
         params

    """
    x0 = array(x0, ndmin=1)
    n = len(x0)
    if type(args) != type(()):
        args = (args,)
    m = _check_func('leastsq', 'func', func, x0, args, n)[0]
    if n > m:
        raise TypeError('Improper input: N=%s must not exceed M=%s' % (n,m))
    if Dfun is None:
        if (maxfev == 0):
            maxfev = 200*(n + 1)
        retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
                gtol, maxfev, epsfcn, factor, diag)
    else:
        if col_deriv:
            _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n,m))
        else:
            _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m,n))
        if (maxfev == 0):
            maxfev = 100*(n + 1)
        retval = _minpack._lmder(func, Dfun, x0, args, full_output, col_deriv,
                ftol, xtol, gtol, maxfev, factor, diag)

    errors = {0:["Improper input parameters.", TypeError],
              1:["Both actual and predicted relative reductions "
                 "in the sum of squares\n  are at most %f" % ftol, None],
              2:["The relative error between two consecutive "
                 "iterates is at most %f" % xtol, None],
              3:["Both actual and predicted relative reductions in "
                 "the sum of squares\n  are at most %f and the "
                 "relative error between two consecutive "
                 "iterates is at \n  most %f" % (ftol,xtol), None],
              4:["The cosine of the angle between func(x) and any "
                 "column of the\n  Jacobian is at most %f in "
                 "absolute value" % gtol, None],
              5:["Number of calls to function has reached "
                 "maxfev = %d." % maxfev, ValueError],
              6:["ftol=%f is too small, no further reduction "
                 "in the sum of squares\n  is possible.""" % ftol, ValueError],
              7:["xtol=%f is too small, no further improvement in "
                 "the approximate\n  solution is possible." % xtol, ValueError],
              8:["gtol=%f is too small, func(x) is orthogonal to the "
                 "columns of\n  the Jacobian to machine "
                 "precision." % gtol, ValueError],
              'unknown':["Unknown error.", TypeError]}

    info = retval[-1]    # The FORTRAN return value

    if (info not in [1,2,3,4] and not full_output):
        if info in [5,6,7,8]:
            warnings.warn(errors[info][0], RuntimeWarning)
        else:
            try:
                raise errors[info][1](errors[info][0])
            except KeyError:
                raise errors['unknown'][1](errors['unknown'][0])

    mesg = errors[info][0]
    if full_output:
        cov_x = None
        if info in [1,2,3,4]:
            from numpy.dual import inv
            from numpy.linalg import LinAlgError
            perm = take(eye(n),retval[1]['ipvt']-1,0)
            r = triu(transpose(retval[1]['fjac'])[:n,:])
            R = dot(r, perm)
            try:
                cov_x = inv(dot(transpose(R),R))
            except LinAlgError:
                pass
        return (retval[0], cov_x) + retval[1:-1] + (mesg, info)
    else:
        return (retval[0], info)

def _general_function(params, xdata, ydata, function):
    return function(xdata, *params) - ydata

def _weighted_general_function(params, xdata, ydata, function, weights):
    return weights * (function(xdata, *params) - ydata)

def curve_fit(f, xdata, ydata, p0=None, sigma=None, **kw):
    """
    Use non-linear least squares to fit a function, f, to data.

    Assumes ``ydata = f(xdata, *params) + eps``

    Parameters
    ----------
    f : callable
        The model function, f(x, ...).  It must take the independent
        variable as the first argument and the parameters to fit as
        separate remaining arguments.
    xdata : An N-length sequence or an (k,N)-shaped array
        for functions with k predictors.
        The independent variable where the data is measured.
    ydata : N-length sequence
        The dependent data --- nominally f(xdata, ...)
    p0 : None, scalar, or M-length sequence
        Initial guess for the parameters.  If None, then the initial
        values will all be 1 (if the number of parameters for the function
        can be determined using introspection, otherwise a ValueError
        is raised).
    sigma : None or N-length sequence
        If not None, it represents the standard-deviation of ydata.
        This vector, if given, will be used as weights in the
        least-squares problem.

    Returns
    -------
    popt : array
        Optimal values for the parameters so that the sum of the squared error
        of ``f(xdata, *popt) - ydata`` is minimized
    pcov : 2d array
        The estimated covariance of popt.  The diagonals provide the variance
        of the parameter estimate.

    See Also
    --------
    leastsq

    Notes
    -----
    The algorithm uses the Levenburg-Marquardt algorithm through `leastsq`.
    Additional keyword arguments are passed directly to that algorithm.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import curve_fit
    >>> def func(x, a, b, c):
    ...     return a*np.exp(-b*x) + c

    >>> x = np.linspace(0,4,50)
    >>> y = func(x, 2.5, 1.3, 0.5)
    >>> yn = y + 0.2*np.random.normal(size=len(x))

    >>> popt, pcov = curve_fit(func, x, yn)

    """
    if p0 is None:
        # determine number of parameters by inspecting the function
        import inspect
        args, varargs, varkw, defaults = inspect.getargspec(f)
        if len(args) < 2:
            msg = "Unable to determine number of fit parameters."
            raise ValueError(msg)
        if 'self' in args:
            p0 = [1.0] * (len(args)-2)
        else:
            p0 = [1.0] * (len(args)-1)

    if isscalar(p0):
        p0 = array([p0])

    args = (xdata, ydata, f)
    if sigma is None:
        func = _general_function
    else:
        func = _weighted_general_function
        args += (1.0/asarray(sigma),)

    # Remove full_output from kw, otherwise we're passing it in twice.
    return_full = kw.pop('full_output', False)
    res = leastsq(func, p0, args=args, full_output=1, **kw)
    (popt, pcov, infodict, errmsg, ier) = res

    if ier not in [1,2,3,4]:
        msg = "Optimal parameters not found: " + errmsg
        raise RuntimeError(msg)

    if (len(ydata) > len(p0)) and pcov is not None:
        s_sq = (func(popt, *args)**2).sum()/(len(ydata)-len(p0))
        pcov = pcov * s_sq
    else:
        pcov = inf

    if return_full:
        return popt, pcov, infodict, errmsg, ier
    else:
        return popt, pcov

def check_gradient(fcn, Dfcn, x0, args=(), col_deriv=0):
    """Perform a simple check on the gradient for correctness.

    """

    x = atleast_1d(x0)
    n = len(x)
    x = x.reshape((n,))
    fvec = atleast_1d(fcn(x,*args))
    m = len(fvec)
    fvec = fvec.reshape((m,))
    ldfjac = m
    fjac = atleast_1d(Dfcn(x,*args))
    fjac = fjac.reshape((m,n))
    if col_deriv == 0:
        fjac = transpose(fjac)

    xp = zeros((n,), float)
    err = zeros((m,), float)
    fvecp = None
    _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err)

    fvecp = atleast_1d(fcn(xp,*args))
    fvecp = fvecp.reshape((m,))
    _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err)

    good = (product(greater(err, 0.5), axis=0))

    return (good, err)


# Steffensen's Method using Aitken's Del^2 convergence acceleration.
def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500):
    """Find the point where func(x) == x

    Given a function of one or more variables and a starting point, find a
    fixed-point of the function: i.e. where func(x)=x.

    Uses Steffensen's Method using Aitken's Del^2 convergence acceleration.
    See Burden, Faires, "Numerical Analysis", 5th edition, pg. 80

    Examples
    --------
    >>> from numpy import sqrt, array
    >>> from scipy.optimize import fixed_point
    >>> def func(x, c1, c2):
            return sqrt(c1/(x+c2))
    >>> c1 = array([10,12.])
    >>> c2 = array([3, 5.])
    >>> fixed_point(func, [1.2, 1.3], args=(c1,c2))
    array([ 1.4920333 ,  1.37228132])

    """
    if not isscalar(x0):
        x0 = asarray(x0)
        p0 = x0
        for iter in range(maxiter):
            p1 = func(p0, *args)
            p2 = func(p1, *args)
            d = p2 - 2.0 * p1 + p0
            p = where(d == 0, p2, p0 - (p1 - p0)*(p1 - p0) / d)
            relerr = where(p0 == 0, p, (p-p0)/p0)
            if all(abs(relerr) < xtol):
                return p
            p0 = p
    else:
        p0 = x0
        for iter in range(maxiter):
            p1 = func(p0, *args)
            p2 = func(p1, *args)
            d = p2 - 2.0 * p1 + p0
            if d == 0.0:
                return p2
            else:
                p = p0 - (p1 - p0)*(p1 - p0) / d
            if p0 == 0:
                relerr = p
            else:
                relerr = (p - p0)/p0
            if abs(relerr) < xtol:
                return p
            p0 = p
    msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p)
    raise RuntimeError(msg)